
Born Broken: Fonts and Information Loss in Legacy Digital Documents

Geoffrey Brown and Kam Woods
Department of Computer Science, Indiana University

150 S. Woodlawn Ave.
Bloomington, IN 47405-7104

Abstract

For millions of legacy documents, correct rendering de-
pends upon resources such as fonts that are not generally
embedded within the document structure. Yet there is sig-
nificant risk of information loss due to missing or incor-
rectly substituted fonts.
In this paper we use a collection of 230,000 Word doc-
uments to assess the difficulty of matching font require-
ments with a database of fonts. We describe the identify-
ing information contained in common font formats, font re-
quirements stored in Word documents, the API provided by
Windows to support font requests by applications, the doc-
umented substitution algorithms used by Windows when
requested fonts are not available, and the ways in which
support software might be used to control font substitution
in a preservation environment.

Overview
Q. I need ‘font x’. ... Can you tell me where I can get
it?
A. This is very unlikely, as there are over 100,000
digital fonts in existence.1

Doubtless, many readers have witnessed PowerPoint
presentations where the slides were clearly missing glyphs
(visible characters) or were otherwise poorly rendered. In
most cases, this unhappy event is the direct result of copy-
ing the presentation from the machine upon which it was
created to a machine provided for the presentation with-
out ensuring that the target machine has the required fonts.
The reason is not always clear to the presenter because Mi-
crosoft Office performs font substitution without warning.

Annoying font substitutions occur frequently. For
example, symbols such as apostrophes and quotations
are rendered with the “WP TypographicSymbol” font in
WordPerfect Office 11. When these documents are mi-
grated to Microsoft Word, this font dependence is pre-
served, and when the documents are rendered on machines
without this font, these symbols become “A” and “@” as
in: “in the AStrategies and Assessment@ Column”.2

The degree of information loss due to substitution de-
pends both upon the importance of the glyphs substituted
and their frequency. For example, corporate logos are of-
ten implemented with dedicated fonts containing a single
glyph. There may be no substantive information loss from
a missing logo for most purposes. In contrast, substitution

1http://www.microsoft.com/typography/FontSearchFAQ.mspx
2http://www.wpuniverse.com/vb/showthread.php?thread-

id=16756

for mathematical symbols may result in total information
loss. For example, our experimental data include 9 docu-
ments with program listings for the Texas Instruments TI-
83 series calculators rendered with the Ti83Pluspc font
which provides various mathematical symbols; these pro-
gram listings are incomprehensible when rendered with-
out this obscure font. This is illustrated in Figure 1. Com-
pounding the problem, Texas Instruments has published
a variety of calculator fonts with different internal names
and possibly incompatible glyphs.

Page 8

MCTM Bulletin February 2005

K: I knew what you meant. I was just kidding. I’ll do

the dishes tonight at dinner.

Jennifer felt better so offered the following challenge to
Kevin.
J: What type of general statement can you make

regarding the various polygons and, better yet, what

can you say about a figure that looks like this?

Kevin was impressed. Would your students be as
impressed or challenged?

Reprinted from the California ComMuniCator, Volume

29. No. 1.

TI Corner

by R2

As statistics continues to grow to a more and more

prominent place in today’s mathematics curriculum, all

resources (NCTM and others) suggest that statistics, even

in its early forms, should be introduced to students at the

appropriate levels. This program (RESIDUAL) is

centered around the regression aspect of curve fitting. It

allows the user to enter and edit the ordered pairs in the

data set and select the type of curve that best fits that data.

As the user tries a variety (8 to select from) of curves, the

program keeps track of the one that best fits the data by

calculating the residual sum.

Lbl T:ClrHome:100000!M:Float
Menu(" RESIDUALS R""," DATA:
ENTER",R," VIEW",S,"
EDIT",W," PLOT",Q," TEST 8
MODELS",0," QUIT",Z)
Lbl R:ClrHome
Input "NO. OF PTS. ",N
N!dim(L#):N!dim(L$):1!S
For(I,1,N):ClrHome
Disp "PT. NO.","":Output(1,9,I)
Input "X = ",X:Input "Y = ",Y
X!L#(I):Y!L$(I):End:Goto T
Lbl W:ClrHome:Input "WHICH ENTRY? ",W
ClrHome:Disp "CURRENTLY:",""
L#(W)!L%(1):L$(W)!L%(2)
Disp L%,"":Input "X = ",X
X!L#(W):Input "Y = ",Y
Y!L$(W):Goto T

Lbl Q:FnOff :""!Y#:PlotsOff
:0!Xscl:0!Yscl:Plot1(Scatter,L#,L$,&)
PlotsOn 1:ZoomStat:StorePic Pic1
Pause :Goto T
Lbl S:ClrHome:2!dim(L%):dim(L#)!N
Disp "NO. OF
PTS.":Output(1,13,N):Pause
For(I,1,N):ClrHome
Disp "PT. NO.","":Output(1,9,I)
L#(I)!L%(1):L$(I)!L%(2)
Disp L%:Pause :End:Goto T
Lbl 0:Menu(" MODELS R""," LINEAR
(2)",1," QUADRATIC",2,"
CUBIC/QUARTIC",3," LOGARITHMIC",4,"
EXPONENTIAL",5," POWER",6," MAIN
MENU",T)
Lbl 1:"aX+b"!Y#
Menu(" LINEAR "," STANDARD",U,"
MEDIAN/MEDIAN",V
Lbl U:ClrHome:LinReg(ax+b) L#,L$
Disp "LinReg(ax+b) "
Disp "----------------",a,b,"",r
Output(3,1,"a ="):Output(4,1,"b
="):Output(6,1,"r =")
1!T:Pause :Goto 7
Lbl V:ClrHome:Med-Med L#,L$
Disp "Med-Med "
Disp "----------------",a,b
Output(3,1,"a ="):Output(4,1,"b =")
8!T:Pause :Goto 7
Lbl 2:ClrHome
If N<3:Goto 0
QuadReg L#,L$:2!T:"aX"+bX+c"!Y#
Disp "QUAD. aX"+bX+c"
Disp "----------------",a,b,c
Output(3,1,"a ="):Output(4,1,"b =")
Output(5,1,"c ="):Pause :Goto 7
Lbl 3:Menu(" SELECT 1 "," CUBIC",A,"
QUARTIC",B)
Lbl A:ClrHome
If N<4:Goto 0
CubicReg L#,L$:3!T:"aX'+bX"+cX+d"!Y#

Disp "aX'+bX"+cX+d"
Disp "----------------",a,b,c,d
Output(3,1,"a ="):Output(4,1,"b =")
Output(5,1,"c ="):Output(6,1,"d =")
Pause :Goto 7
Lbl B:ClrHome
If N<5:Goto 0
QuartReg L#,L$:7!T
"aX^4+bX'+cX"+dX+e"!Y#:ClrHome
Disp "aX^4+bX'+cX"+"," dX+e"
Disp a,b,c,d,e
Output(3,1,"a ="):Output(4,1,"b =")
Output(5,1,"c ="):Output(6,1,"d =")
Output(7,1,"e ="):Pause :Goto 7
Lbl 4:ClrHome:LnReg L#,L$:4!T
"a+bln(X)"!Y#:Disp "LnReg a+bln(X)"
Disp "----------------",a,b,"",r

Correctly Rendered

Page 8

MCTM Bulletin February 2005

K: I knew what you meant. I was just kidding. I’ll do

the dishes tonight at dinner.

Jennifer felt better so offered the following challenge to

Kevin.

J: What type of general statement can you make

regarding the various polygons and, better yet, what

can you say about a figure that looks like this?

Kevin was impressed. Would your students be as

impressed or challenged?

Reprinted from the California ComMuniCator, Volume

29. No. 1.

TI Corner

by R2

As statistics continues to grow to a more and more

prominent place in today’s mathematics curriculum, all

resources (NCTM and others) suggest that statistics, even

in its early forms, should be introduced to students at the

appropriate levels. This program (RESIDUAL) is

centered around the regression aspect of curve fitting. It

allows the user to enter and edit the ordered pairs in the

data set and select the type of curve that best fits that data.

As the user tries a variety (8 to select from) of curves, the

program keeps track of the one that best fits the data by

calculating the residual sum.

Lbl T:ClrHome:100000üM:Float
Menu(" RESIDUALS RÜ"," DATA: ENTER",R,"
..... VIEW",S,"
EDIT",W," PLOT",Q," TEST 8 MODELS",0,"
QUIT",Z)
Lbl R:ClrHome
Input "NO. OF PTS. ",N
Nüdim(L):Nüdim(L‚):1üS
For(I,1,N):ClrHome
Disp "PT. NO.","":Output(1,9,I)
Input "X = ",X:Input "Y = ",Y
XüL (I):YüL‚(I):End:Goto T
Lbl W:ClrHome:Input "WHICH ENTRY? ",W
ClrHome:Disp "CURRENTLY:",""
L (W)üLƒ(1):L‚(W)üLƒ(2)
Disp Lƒ,"":Input "X = ",X

XüL (W):Input "Y = ",Y
YüL‚(W):Goto T
Lbl Q:FnOff :""üY :PlotsOff
:0üXscl:0üYscl:Plot1(Scatter,L ,L‚,Ñ)
PlotsOn 1:ZoomStat:StorePic Pic1
Pause :Goto T
Lbl S:ClrHome:2üdim(Lƒ):dim(L)üN
Disp "NO. OF PTS.":Output(1,13,N):Pause
For(I,1,N):ClrHome
Disp "PT. NO.","":Output(1,9,I)
L (I)üLƒ(1):L‚(I)üLƒ(2)
Disp Lƒ:Pause :End:Goto T
Lbl 0:Menu(" MODELS RÜ"," LINEAR (2)",1,"
QUADRATIC",2," CUBIC/QUARTIC",3,"
LOGARITHMIC",4," EXPONENTIAL",5,"
POWER",6," MAIN MENU",T)
Lbl 1:"aX+b"üY
Menu(" LINEAR "," STANDARD",U,"
MEDIAN/MEDIAN",V
Lbl U:ClrHome:LinReg(ax+b) L ,L‚
Disp "LinReg(ax+b) "
Disp "----------------",a,b,"",r
Output(3,1,"a ="):Output(4,1,"b
="):Output(6,1,"r =")
1üT:Pause :Goto 7
Lbl V:ClrHome:Med-Med L ,L‚
Disp "Med-Med "
Disp "----------------",a,b
Output(3,1,"a ="):Output(4,1,"b =")
8üT:Pause :Goto 7
Lbl 2:ClrHome
If N<3:Goto 0
QuadReg L ,L‚:2üT:"aXÜ+bX+c"üY
Disp "QUAD. aXÜ+bX+c"
Disp "----------------",a,b,c
Output(3,1,"a ="):Output(4,1,"b =")
Output(5,1,"c ="):Pause :Goto 7
Lbl 3:Menu(" SELECT 1 "," CUBIC",A,"
QUARTIC",B)
Lbl A:ClrHome
If N<4:Goto 0
CubicReg L ,L‚:3üT:"aXÓ+bXÜ+cX+d"üY

Disp "aXÓ+bXÜ+cX+d"
Disp "----------------",a,b,c,d
Output(3,1,"a ="):Output(4,1,"b =")
Output(5,1,"c ="):Output(6,1,"d =")
Pause :Goto 7
Lbl B:ClrHome
If N<5:Goto 0
QuartReg L ,L‚:7üT

Default Substitution

Figure 1: TI83plus font samples

In the process of preparing this paper we found several
documents with barcodes rendered using the font “Bar-
code 3 of 9 by request”. When rendered with font substi-
tutions, the bar codes of the numbers are replaced by Ara-
bic numerals. Thus, the substitution preserved the numeric
meaning, but not the functional ability to be scanned! Un-
fortunately, there are many barcode fonts and we were un-
able to find the required font; however, we were able to
find a suitable substitute and to configure Office to accept
our substitute as illustrated in Figure 2.

 United Nations A/57/270/Corr.1

General Assembly
Distr.: General

27 September 2002

Original: English

02-60931 (E) 300902

0260931

Fifty-seventh session

Agenda item 44*

Follow-up to the outcome of the Millennium Summit

 Implementation of the United Nations Millennium
Declaration

 Report of the Secretary-General

 Corrigendum

 1. Paragraph 41

 The second sentence should read:

East Asia has been quite successful in reducing the proportion of people who

suffer from hunger, while Africa’s malnutrition rate has hardly budged.

 2. Paragraph 111

 The last sentence should read:

This is why I intend to submit to the General Assembly in September 2002 a

report that will propose further programmatic, institutional and process

improvements, so that we can translate the ambitious template of the

Declaration into an achievable agenda of action.

 3. Annex table, goal 6

 Replace the text of goal 6 by the following:

Start

Comment: <<ODS JOB

NO>>N0260931E<<ODS JOB NO>>

<<ODS DOC

SYMBOL1>>A/57/270/Corr.1<<ODS DOC

SYMBOL1>>

<<ODS DOC SYMBOL2>><<ODS DOC

SYMBOL2>>

Default Substitution

Regular
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

1234567890
Forced Substitution of “Code39Azalea”

Figure 2: Barcode Rendering

It is difficult to create portable documents that will not
suffer from font substitution when moved to another ma-

chine. Fonts are installed on a platform by the operat-
ing system, by applications, and by individuals. A user
has no way to distinguish between standard fonts offered
in an Office menu and those that have been installed by
other applications. For example, ESRI provides fonts with
its various GIS applications. While these are relatively
specialized applications that are unlikely to be present on
most platforms, there is nothing preventing an Office user
from utilizing the associated fonts. Furthermore, even the
set of standard fonts changes over time – the fonts installed
by Windows XP are not identical to those installed by
Vista. Because of significant differences in the machine
environments, there is a high probability that transferring
a document between machines will result in missing fonts.

A solution to the problem of missing fonts for docu-
ment preservation requires three components – identifica-
tion of missing fonts, acquisition of the fonts or suitable
substitutes, and configuring a suitable rendering environ-
ment including all fonts or their substitutes. In this paper
we focus on the problem of font identification. The is-
sues we discuss include extraction of font identification
data from digital documents, the use of that information
to match against a database of known font identifiers, and
techniques for controlling font substitution.

The central analysis in this paper is based upon two
large collections of Word documents – one described in
(Reichherzer and Brown 2006) gathered using glossary
queries to Google, and the second exclusively gathered
from “.gov” sites. The second collection was created to
test an hypothesis that government documents might use
more restricted font sets; however, that did not prove to be
the case.

To test our ability to match font requirements with font
names we gathered font name information from several
major vendors and application software. Names were ex-
tracted from fonts, from published lists of fonts, and from
tables of names provided by vendors.

While the results initially appear depressing – a com-
mon desktop environment can correctly render around
75% of a document collection – there are indications that
with modest work the fonts required to faithfully render
92% of a collection can be readily identified. The prob-
lem of identification is unsolvable in an absolute sense –
in any collection of documents there are likely to be re-
quired fonts that cannot be reasonably identified. There
are simply too many fonts which have been in use and
the data on font names available from font foundries or
the fonts themselves too sparse to guarantee identification.
Furthermore, some documents may include fonts with cor-
rupt name information – we have seen examples of docu-
ments with indecipherable font names.

The remainder of this paper is organized as follows. We
begin with a discussion of font formats (e.g. TrueType)
and the available font identification information. By gath-
ering information from fonts and font vendors, we have
created a database containing several thousand popular
fonts. We then describe the information available in Of-
fice documents, and our use of open source libraries to
extract the names of fonts referenced by these documents.
Finally, we describe experiments to match font names ex-
tracted from Microsoft Office documents with names in
our database.

Background
Fonts
A font consists of a set of glyphs indexed by codepoints
(integers) within one or more codepages (a defined code-
point to a character mapping such as the latin alphabet)
along with various geometric rendering information. Two
fonts may be suitable substitutes if they contain similar
glyphs for all codepoints. While this is frequently the case
where the glyphs represent characters from common al-
phabets, there are many special case of symbolic charac-
ters (e.g. mathematical, scientific, or icons) where substi-
tution of glyphs from another font destroys the underlying
meaning of the document.

While there have been many font formats in use, the
two most common formats for Windows platforms are
PostScript and TrueType. There are still bitmapped
fonts distributed with Windows for MS-DOS compatibil-
ity (FON files) which do appear to be used in some Office
files. However, other than noting that they contain name
strings that can be extracted, we do not discuss them fur-
ther.

Although PostScript fonts appear to be in the decline,
they were the dominant font format for at least a decade.
There are several PostScript font formats (e.g. types 0, 1,
and 2) but many of the differences relate to how glyphs
are defined. For font identification, the key information
provided in every PostScript font includes ASCII strings
identifying the font version, family name, font name, and
full name (Adobe Developer Connection 2009). The full
name shows the complete name of a typeface including
style and character set information, and is typically used
in font menus. The font name generally contains much
of the same information as the full name, but in a com-
pressed form limited to 29 characters. There are conven-
tions for this compression (for example a rule that reduces
the “words” to a string with 5,3 and 3 characters); how-
ever, it can be challenging to relate the font name strings
with published lists of fonts (Microsoft 2009a).

TrueType was developed by Apple as a competitor to
PostScript fonts and was subsequently adopted by Win-
dows. Today, TrueType is the most common font format
for Mac OS, the X Windows platform, and Microsoft Win-
dows. The file format for TrueType is now covered by the
OpenType specification (which can serve as a container
for PostScript fonts). OpenType files are organized as a
set of tables. The most important tables for our work are
the naming tables (name) and the table (OS/2) contain-
ing Windows metrics including the Unicode and Windows
code page ranges. The name table includes various strings
keyed by platform, encoding, language, and name. Plat-
forms include Windows and Macintosh. Encodings are
platform specific – on the Macintosh these correspond to
script manager codes (e.g. Roman, Japanese, etc.). On
Windows, common encodings include Unicode UCS-2
and UCS-4.

OpenType language IDs are platform-specific, and are
used to indicate various language specific translations of
the name strings. The types of names include copyright,
font family, font subfamily, full font name, and PostScript
names. The language used in font name strings within Of-
fice documents corresponds (where available) to the lan-
guage for the Windows platform upon which the doc-
ument was created; for example, “Arial Bold”, “Arial

Negrita”, “Arial Vet”, and “Arial Gras” are the English,
Spanish, Dutch, and French names for the same font. In
gathering font data for this paper we found that only the
most widely used fonts tend to have name strings in mul-
tiple languages and several large foundries provided only
English names strings with the majority of their fonts.

Fonts in Windows and Word
In this paper we concentrate on the legacy Microsoft Word
binary format. While we have performed no specific work
with other formats (e.g. WordPerfect) there is good rea-
son to believe that the conclusions will be similar because
application programs such as Word and WordPerfect de-
pend upon the underlying operating system API for access
to and rendering of installed fonts. The font information
embedded in a document is ultimately based upon the in-
formation available from the system API. Thus, we begin
with a brief examination of the Win32 font functionality
as described in the MSDN documentation (Microsoft De-
velper Network 2009). A complete analysis examining the
APIs of other operating systems (e.g. for the Macintosh)
is beyond the scope of this paper.

The central data structure used by an application to ex-
change font information with the Windows operating sys-
tem is the “logical font” or LOGFONT structure that is
used to describe the most significant features of a font.
Applications create LOGFONT structures to request that
Windows find a matching font and Windows enumerates
available fonts for applications by generating LOGFONT
structures. The structure provides information such as
weight, orientation, and style (e.g. script, decorative, ro-
man) as well as a (maximum) 32 character (Unicode or
ASCII) name for the font. The metrics provide geomet-
ric information such as pitch and width, style informa-
tion such as italic or underlined, and information about
the range and type of the character set supported (e.g.
ANSI, Symbol, Turkish). The type information can be
used to distinguish “Raster fonts”, “Vector fonts”, “True-
Type fonts”, and “Downloadable fonts”.

Word documents store their knowledge about fonts in
a similar structure table of “font family names” (FFN),
which include the name string (from the LOGFONT struc-
ture), a flag indicating whether the font is TrueType, the
character set, the font weight and style, PANOSE number,
and a 20-byte “font signature” (Microsoft 2009c). The
name string is either in UTF-16 or ASCII depending upon
the version of Word creating a document. The font signa-
ture indicates the Unicode (16 bytes) and Windows code
pages (8 bytes) for which the font contains glyphs. Simi-
lar data exist in the OS/2 metrics table for OpenType fonts
and might be useful for verifying that a font file matches
the font referenced by a Word document.

PANOSE numbers were developed in the 1980’s
(Bauermeister 1987) as a mechanism for classifying fonts
with the explicit goal of identifying good substitutes.
While TrueType fonts include PANOSE numbers, and
Word retains those numbers in its font tables, published
research suggests that PANOSE has not been widely im-
plemented correctly – many fonts have “default” values
(Impson 2005). Furthermore, where PANOSE is correctly
used the information is likely to be of little added value
for font identification because these fonts tend to be those
distributed by major vendors such as Microsoft for which
accurate font name data has been recorded.

In our work, we rely upon the font name strings ex-
tracted from Office documents. While every Word doc-
ument contains a single font name table, not all fonts
listed in this table are used by the document. Further-
more, our experience suggests that as a document evolves,
Word fails to properly delete unused entries and empty or
“garbage collect” name strings. Thus, extracting the set of
valid name strings requires walking the document charac-
ter by character.

Font Matching Experiments
In this Section we use two data sets totaling approxi-
mately 230,000 Word documents to evaluate the difficulty
of identifying referenced fonts given a database of font in-
formation. The primary identification technique we utilize
is based upon name matching; however, we also evaluate
the utility of the other font metrics recorded in Word doc-
uments.

We had hoped to build a database of font information
extracted from the fonts published by the major foundries;
however, we found most foundries reluctant to provide
the requested information and the cost of purchasing fonts
not justified by this exploratory research.3 We resorted to
combining information from a variety of sources includ-
ing font files and font name information provided by sev-
eral major foundries, extracted from published lists, and
retrieved from foundry web pages. The font collections
include fonts provided with various Mac OS X and MS
Windows distributions, fonts distributed with applications
such as Microsoft Office and WordPerfect, and fonts do-
nated by Bitstream. The font data we collected are sum-
marized in Table 1.

To determine the fonts used in Word documents, we
wrote a custom application based upon the open source
library libwv which is the basis for file import in Abi-
word and other applications (Lachowicz 2009). Through
comparing key aspects of libwv with the published spec-
ification, we believe libwv is relatively correct – there
are aspects of the specification that are far from clear,
and specific notes point to items requiring further work.
The libwv software provides a basic document process-
ing function with application-specific callback functions.
For our work, it was necessary only to provide a function
to track the fonts specified at the beginning of a text run
and a function to process each character in a text run. For
each font in the document name table, we record both the
codepoints used and the number of characters referencing
the font. Selection of the correct font for a given char-
acter is actually done incorrectly in libwv – the code
does not implement the “font calculation” described in
Appendix B of the Word 2007 Binary File Format doc-
ument (Microsoft 2009c). We corrected this error in our
work. Our code generates reports including the active font
names with the number of codepoints and characters from
each font as well as the other font metrics recorded in the
Word document.

Given the font information extracted from a collection
of Word documents and a database of font names we can
determine which extracted names exactly match names in
the database. While there appear to be opportunities to ap-

3 We are grateful to Bitstream for providing a large collection
of fonts, FontFont and URW for providing tables of font name
information.

Foundry
Adobe Published Table 2374
Bitstream TrueType Fonts 1556
FontFont Foundry Supplied Table 11973
URW Foundry Supplied Table 2358

Operating System
Microsoft Windows + Office Font Files 444
Mac OS X + Office Font Files 322

Application
Adobe PostScript 3 Fonts Published List 103
Microsoft Applications Published List 537
WordPerfect TrueType Fonts 1080

Source Data Type Number of Fonts

Table 1: Font Data

ply various heuristics for inexact matching (for example
longest matching prefixes), our examination of the names
suggests there are many special cases, thus we studied ex-
act matching as a baseline. We matched names against
three distinct name sets – our complete collection, the
names extracted from an installation of Windows XP and
Office 2007, and the single name “Times New Roman”
which is the most common font referenced in our data sets.

Our metric for each font collection is the percentage
of documents whose font requirements can be completely
met (satisfied) by that collection. We compare these re-
sults with the percentage of “satisfied documents” given
font collections of the N most referenced fonts for all val-
ues of N. The results for our glossary based collection
(3910 fonts) are illustrated in Figure and those for the
“.gov” (1920 fonts) documents are illustrated in Figure .
Although the total number of referenced fonts differs, the
overall results are quite similar – roughly 31-39% satis-
fied by Times New Roman, 72-79% satisfied by XP and
Office, and 90-94% satisfied by our more comprehensive
collection. Notice that in both cases the top 100 fonts sat-
isfy approximately 92% of the documents.

As mentioned above, exact name matching is probably
too pessimistic. For example, we noticed many variations
on fonts including the word “Times”. Some of this varia-
tion is due to similar fonts published by different vendors,
some is due to changes in name conventions from the early
bitmapped fonts to PostScript fonts to Truetype, and some
is due to significant differences. The top 10 “Times” fonts
and their fraction of reference from the two document col-
lections is illustrated in Table 2. The complete list com-
prises 375 fonts and 49% of all font references. Note that
the values in Table 2 are calculated from the total num-
ber of references rather than the percentage of documents
satisfied.

Even if all variations on Times, after suitable analysis,
proved to be equivalent, the overall problem isn’t signif-
icantly simplified. The extremely long tail on font usage
means achieving a 95% satisfaction level for a document
collection is tractable, achieving 99% may not be feasible.
Furthermore, our experience suggests that finding many of
the identified fonts will be quite challenging.

Ultimately, preservation of documents will require se-
lection of suitable font substitutes either because a partic-
ular font cannot be obtained or identified. Thus, we ex-
amined other data that might aid in characterizing suitable
substitutes or in determining whether a required font is

Times New Roman 42%
Times 3%
CG Times 1%
TimesNewRoman 0.5%
Times New Roman Bold < 0.5%
TimesNewRoman,Bold < 0.5%
Times New (W1) < 0.5%
CG Times (W1) < 0.5%
TimesNewRomanPSMT < 0.5%
Times-Roman < 0.5%
... ...
Total (375) 49%

Table 2: Times Variations. Percentages calculated from
number of times each font variation is encountered.

critical to preserving the information content of a docu-
ment.

The primary additional font metrics available from
Word documents include the font family (Roman, Swiss,
etc.) and pitch, the font weight, Panose number, and Code
sets (Unicode and Windows). The two font families that
are likely to be safely substituted are Roman and Swiss
(serif and san serif fonts respectively). It is less clear
whether Modern or Script can be substituted, and Deco-
rative generally cannot be substituted. As illustrated in
Table 3 and Table 4, either the font family or pitch infor-
mation has a “default” value for nearly 40% of all refer-
enced fonts. The font family categories are described in
(Microsoft 2009b).

Default 40%
Fixed Pitch 3%
Variable Pitch 57%

Table 3: Font Pitch

Unicode range and Codepage information can be used
to analyze font data at a finer granularity, providing a
clearer picture of why a particular font may be used in
a given document (e.g. in order to satisfy the need for par-
ticular glyphs) and potential guidance on selection of a
suitable substitute. We intend to explore the use of such
information in future research.

As mentioned, many fonts are used for a single or few
glyphs. In the case of the document collections studied,

 30

 40

 50

 60

 70

 80

 90

 100

 10 25 50 100 200 300 400

Pe
rc

en
ta

ge
 o

f F
ile

s
Sa

tis
fie

d

Total Fonts

Times New Roman

Font Collection

XP+Office 2007

Figure 3: Font Usage for Glossary Documents

Default Do not care or don’t know 42%
Roman Serif fonts with variable stroke

width
28%

Swiss San serif fonts with variable
stroke width

21.5%

Modern Constant stroke width 4.5%
Script Handwriting 2%
Decorative Novelty or other 2%

Table 4: Font Family

nearly 10% of all referenced fonts were never used for
more than a single glyph of these. Unfortunately, even as-
suming all these fonts are known (by adding the names to
our database) doesn’t appreciably alter our “satisfaction”
rate.

Font Substitution
Locating missing fonts using name strings as a primary
identifier is challenging. While a number of websites
providing font search (one-at-a-time) based upon large
databases, they are often incomplete, inaccurate, and can-
not be automatically queried. We encountered a variety
of problems with names containing non-ASCII characters,
compressed names, variations of known names, and rare
or specialized fonts. Processing compressed names in par-
ticular may be platform specific. For example, the Win-
dows fonts named “Helv” and “Tms Rmn” in Windows
3.0 were renamed to “MS Sans Serif” and “MS Serif”,
respectively, in Windows 3.1. Modern iterations of the
Microsoft operating system maintain a system-accessible
map in the font substitution registry subkey to correctly
map these names. However, on Macintosh platforms the
proper substitutions remain unavailable.

Font substitution in Microsoft Windows is performed
according to a “closest match” criteria calculated as a
weighted sum from a vector of information corresponding
to the LOGFONT structure. As the name suggests, this

information does not correspond to a “physical” font (e.g.
the data that defined a font installed or loaded into the task
environment) but rather a “logical” font composed of a se-
quence of properties requested as a result of a user action
or application request during the loading of a document.

When an application is tasked with displaying text in
a given font, it performs an API function call populated
with values from the LOGFONT corresponding to the de-
sired (logical) attributes. Windows realizes a best match
to the desired font by searching the installed fonts to find
one with values closest to this attribute set. As previ-
ously noted, these attributes include font family names,
font weight, font width, and font slope. An obvious con-
sequence of this is that the (absolute) best match may cor-
respond to a font not installed on the system.

Font matching information is precalculated and cached
from existing font collections according to a detailed al-
gorithm designed to support efficient font matching on re-
quest. In addition to the attributes noted above, this pro-
cess includes the generation of combined Family and Face
names, extraction and resolution of various terms for style
and weight (for example, “Bold Face” to be treated the
same as “Bold”), and the extraction of canonical numeri-
cal representations.

Fonts are subsequently matched by location of an exact
(or longest-substring match) FontFamily name, a match-
ing face from the candidate face list (computed as a
weighted attribute vector based on FontStretch, FontStyle,
and FontWeight - prioritized in that order), and localiza-
tion settings.

Microsoft provides detailed information on font match-
ing in Windows under the Windows Presentation Founda-
tion (Microsoft 2009d). In some cases, a matched font
may not contain the required glyphs (for example, a font
with a Latin-only glyph-set requested to render glyphs in
an unsupported codepoint range). The Microsoft Unicode-
rendering service, Uniscribe, will automatically render the
unsupported script in the appropriate fallback font (Kaplan
2009).

In order to provide more accurate mapping from log-

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 25 50 100 200 300 400

Pe
rc

en
ta

ge
 o

f F
ile

s
Sa

tis
fie

d

Total Fonts

Times New Roman

Font Collection

XP+Office 2007

Figure 4: Font Usage for Government Documents

ical to physical fonts and account for improved render-
ing technologies, Microsoft introduced improved APIs in
Windows XP (moving from GDI to GDI+) and Windows
7 (with the development of DirectWrite). As a result, the
font substitution actions performed by different versions
of Microsoft Office may be inconsistent. Additionally, the
default font substitution algorithm implemented in GDI+
may be overridden within an application.

Because of this, it can be difficult to accurately repli-
cate substitution actions performed by a proprietary ap-
plication such as Microsoft Word. This can be demon-
strated via a simple experiment using fonts provided
with the operating system. If a LOGFONT struc-
ture is populated completely with information from a
font loaded into the system font table using an API
call such as AddFontResourceEx(), and that font
is then unloaded, a subsequent call to the function
CreateFont() under Windows XP (GDI+) will fre-
quently result in mapping that differs from the substitution
performed by Microsoft Office.

Furthering the problem, there is not enough information
included in a legacy Word (.doc) file for any font used to
completely fill the LOGFONT structure. Font informa-
tion that is available, such as the PANOSE number or a
substitution “hint”, cannot be passed directly to font map-
ping functions within GDI+. This is important because it
exposes a significant preservation issue; even when docu-
ment specifications are well documented (or fully open),
the behavior of the application most commonly used to
render those documents becomes the defacto standard for
all rendering services. If the behavior of such an applica-
tion depends on code or API functions that are not gener-
ally exposed, the “openness” of the format is not necessar-
ily a guarantee of preservation-friendliness.

David Levy notes that the severity of the risk posed by
font substitution depends on a variety of factors, that “even
in these simplest of cases, sensitivity to the circumstances
of use is crucial to determining what is to be preserved -
what counts as successful preservation” (Levy 1998). Font
selection algorithms are complex, and the substitution ac-

tions performed may be opaque to anyone who is not a
typographer or software developer. However, simple tools
can assist the user in determining the degree to which a
rendered document is well-formed (or exhibits informa-
tion loss). In the following section, we briefly describe a
prototype to provide this service.

Discussion
We have shown that the majority of digital documents
obtained from a wide range of sources (up to 79%) can
be rendered accurately using fonts appearing in modern
desktop environments such as the combination of Mi-
crosoft Windows and Microsoft Office. With a small
amount of additional work – using information drawn
from font foundries, performing family name matches for
legacy fonts or commercial fonts for which distribution
has ceased, we can expect to increase this coverage to
92%.

This nevertheless leaves a large number of documents
unaccounted for. Microsoft’s own search engine indexes
nearly 60 million documents currently available on the
web. At this level of coverage, 1.8 million documents
are guaranteed to be rendered inconsistently on a typical
workstation. For many of these documents, the loss of in-
formation may be negligible. It is impossible, however, to
quantify this without appropriate software tools to analyze
the risk to a particular collection.

Even with access to the full documentation for a legacy
proprietary format, replicating the behavior of the origi-
nal environment used to render that document can be ex-
tremely difficult – or impossible – for tasks as seemingly
basic as font selection and use. While publishers and in-
stitutional archives build support around work-flows opti-
mized for “born archival” documents, the majority of the
documents produced in the world today continue to be cre-
ated using proprietary office software with font embed-
ding disabled. With an open syntactic specification for the
documents, the font identification and selection problem
remains.

Automated tools to simplify the identification and lo-
cation of missing fonts in document sets can significantly
reduce the risk of information loss in an archive. As part
of our ongoing research, we are developing tools to as-
sist archivists in processing and analyzing font informa-
tion from large collections of documents. Our current tool
is capable of automatically preprocessing collections of
Microsoft Word documents, identifying ranges of charac-
ters for which fonts are not available, and rendering those
ranges separately from the remainder of the document for
examination. In concert with this tool, we have developed
a plug-in for Word which automatically locates and high-
lights ranges for which fonts or characters have been sub-
stituted.

Our research demonstrates the need for simple, effec-
tive tools to correctly identify font information and lo-
cate missing font data in order to facilitate lossless render-
ing. We show that effective rendering of heterogeneous
document collections can only occur when supported by
a database of information drawn from multiple vendors;
no existing identification technology provides universal or
even adequate coverage. Proper archival handling of these
digital objects should include tools to rapidly and selec-
tively present to a human relevant document segments for
quality assurance in order to mitigate risk during subse-
quent archival and access events.

References
[Adobe Developer Connection 2009] 2009. Font techni-

cal notes. http://www.adobe.com/devnet/font.
[Bauermeister 1987] Bauermeister, B. 1987. A Manual

of Comparative Typography. Van Nostrand Reinhold.
[Impson 2005] Impson, J. 2005. Evaluating the IBM and

HP/PANOSE font classification systems. Online Infor-
mation Review 29(5):14.

[Kaplan 2009] Kaplan, M. 2009. Font sub-
stitution and linking #1. http://blogs.msdn.com/-
michkap/archive/2005/03/20/-399322.aspx.

[Lachowicz 2009] Lachowicz, D. 2009.
wvWare, library for converting Word documents.
http://wvware.sourceforge.net/.

[Levy 1998] Levy, D. M. 1998. Heroic measures: re-
flections on the possibility and purpose of digital preser-
vation. In DL ’98: Proceedings of the third ACM con-
ference on Digital libraries, 152–161. New York, NY,
USA: ACM.

[Microsoft Develper Network 2009] 2009. DirectWrite
API Reference. http://msdn.microsoft.com/en-
us/library/dd368038(VS.85).aspx.

[Microsoft 2009a] 2009a. List of fonts supplied
with Microsoft products. http://www.microsoft.com
/typography/fonts/pro-duct.aspx?PID=1.

[Microsoft 2009b] Microsoft. 2009b. LOG-
FONT. http://msdn.microsoft.com/en-us/library/
ms901140.aspx.

[Microsoft 2009c] 2009c. Microsoft
Word 2007 Binary Format Specification.
http://download.microsoft.com/download/0/B/E/
0BE8BDD7-E5E8-422A-ABFD.../Word97-
2007BinaryFileFormat(doc)Specification.pdf.

[Microsoft 2009d] 2009d. WPF font selection model.
blogs.msdn.com/text/attachment/2249036.ashx.

[Reichherzer and Brown 2006] Reichherzer, T., and
Brown, G. 2006. Quantifying software requirements for
supporting archived office documents using emulation.
In JCDL ’06: Proceedings of the 6th ACM/IEEE-CS
joint conference on Digital libraries, 86–94. New York,
NY, USA: ACM.

http://www.adobe.com/devnet/font/
http://blogs.msdn.com/-michkap/archive/2005/03/20/-399322.aspx
http://blogs.msdn.com/-michkap/archive/2005/03/20/-399322.aspx
http://wvware.sourceforge.net/
http://msdn.microsoft.com/en-us/library/dd368038(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd368038(VS.85).aspx
http://www.microsoft.com /typography/fonts/product.aspx?PID=1
http://www.microsoft.com /typography/fonts/product.aspx?PID=1
http://msdn.microsoft.com/en-us/library/ ms901140.aspx
http://msdn.microsoft.com/en-us/library/ ms901140.aspx
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD.../Word97-2007BinaryFileFormat(doc)Specification.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD.../Word97-2007BinaryFileFormat(doc)Specification.pdf
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD.../Word97-2007BinaryFileFormat(doc)Specification.pdf
file:blogs.msdn.com/text/attachment/2249036.ashx

	Overview
	Background
	Fonts
	Fonts in Windows and Word

	Font Matching Experiments
	Font Substitution
	Discussion

