ABSTRACT
Automatic Discovery and Classification of Discourse Contingency Relations
Kam A. Woods
Mentor: C. Roxana Girju, Ph.D.

This thesis explores the use of Support Vector learning applied as part of a semi-
automatic system for the discovery and classification of the discourse contingency
relations cause, concession, condition, purpose, reason, and result at the discourse
level in open text. The semantic spaces associated with these finely grained and
highly ambiguous discourse relations are represented via a compact set of carefully
selected syntactic, grammatical, and semantic features from a series of automatically
parsed data sets. We perform a series of one-vs-one and one-vs-all style classification
experiments on this data using the libSVM-2.5 machine learning tool with a Radial
Basis Function kernel. This research has broad applications, including the deepening
of inferential ability in Question Answering systems, and general improvements in

text understanding.
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CHAPTER ONE

Introduction

1.1 Motivation

One of the long-term goals in current natural language processing research
is the design and construction of domain-independent, adaptive systems capable of
discourse interpretation in open text. Simply stated, the desired system would be
capable, in an unsupervised setting, of extraction and interpretation of semantic
context within a cohesive text span of arbitrary length. With such a system, we can
envision sophisticated and subtle forms of analysis not possible with systems available
today, which rely on limited statistical techniques, domain specific training schemes,
or large databases of manually constructed world knowledge and rules for inference.

Discourse processing concerns the location and identification of semantic rela-
tions at the discourse level and the clauses or sentences associated with them. It
is centered around the idea that the production and interpretation of phrases and
utterances depends on the discourse context, and that the meaning associated with
these phrases is directly related to coherence in the passage. Modern approaches to
research in discourse utilize the fact that clauses, sentences, and larger text spans
are not read and interpreted in an isolated context, but rather are highly interrelated
(Mann and Thomson 1988).

Discourse processing, and more generally, the semantic interpretation of coher-
ent text spans, is a complex task. It does not suffice to describe coherence relations
between each pair of sentences, as sentence ordering in a coherent passage is often
non-linear. Instead, we seek to reformulate the text as a hierarchical structure, with
locally coherent pairs of nodes (extracted text spans) connected by some semantic

relation. Frequently, the selection of such relations will rely on processing schemes



Rhetorical Relations

T

Elaboration Contrast Condition Explanation Cause Enablement

elaboration—additional contrast condition evidence cause purpose

elaboration—part—whole concession hypothetical reason result enablement

example antithesis contingency consequence

definition otherwise

Figure 1.1. Some RST relation classes, according to Mann and Thomson

for particular syntactic constituents, such as in anaphoric or cataphoric phrases where
a decision must be made regarding pronoun resolution.

The selection and organization of the set of discourse relations remains an area
of active research in computational linguistics. One widely-recognized approach is
that of Rhetorical Structure Theory, which describes a set of rhetorical relations that
hold between text spans. An abbreviated set of the relations used in RST is given in
Figure 1.1.

A discourse relation may be cued by a particular word or phrase, the presence
of which is neither necessary nor sufficient in establishing coherence. Consider the
following sentence: Mary ate Anne’s orange because she was hungry. The cue because
has been inserted to provide clarification of the explanation present in the passage
(why Mary ate Anne’s orange), but does not itself provide the semantic pairing. We
can just as easily write: Mary ate Anne’s orange. She was hungry.

The immediate interpretation is the same; that is, a coherent and cohesive
passage in which the pronoun corefers with Mary. Likewise, we can write the sentence
Mary ate Anne’s orange because she had a red car. Here cohesion is maintained (due
to pronoun coreference, although the reference is now ambiguous) but coherence is
not. This simple example demonstrates why lexical and syntactic approaches to text
analysis are freqently inadequate, even when the underlying semantic structure is

unambiguous. The EXPLANATION relation in this example is encoded irrespective of
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the presence of the cue, and can be expressed in the following simple logical formula

(Jurafsky and Martin 2000):
Ve;, e cause(e;, e;) — Explanation(e;, e;) (1.1)

This is, given events e; and e;, if e; is the cause of e; we can say that the EXPLANATION
relation holds between the associated text spans.

Finally, the presence of a cue phrase may not necessarily constrain us to a
single relation. As we begin to examine the semantic structure of the sentence in
more detail, it may frequently be observed that a single cue appears in conjunction
with multiple relations, introducing a further level of ambiguity.

While many theories of discourse structure provide sophisticated models for text
analysis, the approaches used can differ significantly, particularly with respect to the
decomposition and coverage of the semantic classes described. There is often a large
degree of overlap in the relations considered, stemming from a shared recognition
that classes such as CONDITION, ELABORATION, and EXPLANATION exist. However,
we may find that in the application of two different theories, relation instances in
open and unrestricted text will frequently be labeled differently depending on how a
particular relation has been defined.

Systems for automatically assigning such labels are therefore limited, and the
latest statistical and machine learning techniques provide only for the most shallow
semantic approach to text analysis. This is in part due to the sheer complexity and
breadth of the discourse relation class definitions, in part due to significant syntactic
and semantic ambiguities inherent in open text, and in part due to the lack of algo-
rithmic or heuristic methods for reliable logical inference. Such systems are capable,
among other tasks, of recognizing and labeling with high accuracy limited subsets of
ambiguously cued discourse relations (Marcu and Echihabi 2002), locating and anno-

tating discourse connectives (cue words and phrases) and the arguments they link in
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syntactically and semantically annotated corpora (Miltsakaki 2002), probabilistically
inferring single relation classes in large unannotated corpora (Lapata and Lascarides
2004), and performing sentence level discourse parsing on syntactically annotated
corpora (Soricut and Marcu 2003).

In this thesis, we focus on the contingency relations, a set of six discourse
relations encoded by adverbial clauses of contingency. These relations are CAUSE,
REASON, PURPOSE, REsSuLT, CONDITION, and CONCESSION. For our purposes,
the contingency relations are superordinated by the semantic class EXPLANATION,
a hierarchical selection that differs significantly from that in theories such as RST,
where these relations are split among a series of other classes. In fact, as we shall
see later, the semantic label CONTINGENCY carries a separate meaning in RST. The
justification for the grouping used here depends both on syntactic considerations (all
six can be described in terms of an adverbial classification) and semantic analysis
provided in Chapter 3.

EXPLANATION discourse relations occupy a key role in the semantic structure
of natural text. We observe them, for example, in arguments providing evidentiary
support and descriptions of reason or purpose. As noted previously, they may be
indicated by distinct cue words or phrases that link a main and subordinate argu-
ment within a sentence, or occur without explicit cues, particularly in extended or
rhetorically complex text spans. Native speakers of English can readily identify such
cues (when present) and the arguments they connect, and, with minimal training,
are able to distinguish between relatively finely-grained classes of EXPLANATION re-
lations, including those examined in the experiments conducted here, the contingency
relations.

From a computational perspective, advances in the construction of semantic and
discourse annotated corpora have dramatically impacted the performance of statis-

tical and machine learning models constructed for the automatic or semi-automatic
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classification of broad classes of semantic relations. Furthermore, recent work has
shown that coarsely-grained discourse relations can be identified in massive, unan-
notated corpora using relatively simple lexical and syntactic features in a statistical
classifier (Marcu and Echihabi 2002). As these relations are realized at finer levels of
granularity, however, performance drops due to their semantic and syntactic similar-
ities. More sophisticated mechanisms relying on semantically annotated corpora and
revised feature sets constitute one potential solution to this problem.

Many important applications exist for systems capable of automatically identi-
fying discourse relations in open text. These include Text Summarization, in which a
document is compressed into a representation of logically ordered salient points, and
Question Answering, which in many cases requires complex inferential processing. For
example, traditional QA systems can readily process with a high degree of accuracy
questions which require as an answer a single fact (“factoid”-based questions) such as
“When did the battle of Austerlitz take place?”, and, to some degree, questions where
extraction of the answer requires some level of semantic inference — inference achieved
through the recognition of discourse relations. However, as these relations become
more finely grained, as the ambiguity both in the relation classes and the phrases
indicating those relations increases, performance in such systems typically drops dra-
matically. As an example, take the set of questions “Why did X happen?”, “What
was the purpose of X”? and “What are the effects of X?”, classified respectively as
the Explanation sub-relations CAUSE, PURPOSE, and RESULT.

We believe that the learning model presented in this paper may help to signif-
icantly improve the performance of such high level discourse processing systems by
increasing the accuracy of discourse relation classification in cases where the relations
are ambiguously cued or exhibit other forms of semantic and syntactic overlap. Our
approach is novel, both in selection and use of particular features in the learning

model, and in the examination of the contingency relations, which to our knowledge



have not been addressed in other approaches.

1.2 Experimental Overview

We are interested in a generating a detailed account of the characteristics of
the contingency relations, where our primary focus is the semantic similarities and
differences among them. Consequently, we perform experiments aimed at automati-
cally identifying and classifying contingency relations in text. To build the system,
we train a set of Support Vector Machine classifiers using nine lexico-syntactic and
semantic features.

The training and test examples are generated from the L.A. Times text collec-
tion, an unannotated (discounting HTML document tags) corpus drawn from a larger
text collection used for a wide variety of text analysis tasks. The articles appearing
in this collection date from 1989 to 1994. All examples are automatically tagged
to provide parallel sets comprising syntactic, grammatical, and discourse parses, in
addition to being manually tagged with argument boundaries.

Each sentence (or pair of sentences) extracted from the raw corpus encodes one
of the six contingency relations, and is explicitly but ambiguously identified by a list
of predefined cue phrases. Selection of the cue phrases is based on relative frequency
in the raw text collection. As noted previously, we consider the set of contingency
relations to be superordinated by the EXPLANATION semantic class.

Pairwise classification trials allow us to judge the relative performance of the
features selected on both relations where there exist cross-relation cue-phrase ambi-
guities, and those where cue sets are disjoint. More generally, these trials provide
insight into the semantic spaces occupied by the contingency relations and the ef-
fect of semantic overlap on classification accuracy. One-versus-all classification trials
provide further insight into the performance of the system in instances where a sin-

gle relation must be selected from a non-homogeneous group consisting of examples
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drawn from all remaining contingency relations, a task more representative of relation
classification in open text.

Accuracy ranges from a low of 55.96% (CAUSE vs. CONCESSION) to a high
of 72.47% (CONDITION vs. RESULT) in the pairwise comparisons. All comparisons
outperformed the respective baselines centered around 50% (baseline adjustments
were performed due to differentials in the magnitudes of data extracted for the test

sets).

1.3 Goals

Our primary goals are two-fold. First, to show that a carefully selected set
of lexico-syntactic and semantic features can effectively be used to classify among
a set of finely grained and highly ambiguous discourse relations, the contingency
relations, when paired with a Support Vector Machine learning procedure. Second,
to demonstrate that this classification can be performed even when the discourse
context is inter-sentential — that is, between adjacent sentences.

The classification procedure presented here has been developed specifically for
the improvement of semantic interpretation systems designed for tasks such as Text
Summarization and Question Answering. Ultimately, the desired outcome is a system
capable of locating and classifying semantic arguments in open texts of arbitrary

length.

1.4 Thesis Outline
In Chapter 2, we discuss previous attempts to improve performance in simi-
lar classification problems through the use of lexico-syntactic and semantic informa-
tion extracted from associated corpora. In addition, we revisit the representational
schemas that have been used to encode this information, including but not limited

to rhetorical structure theory and discourse annotated corpora, automatic semantic
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role labelling, approaches to discourse representation, grammar parsing tools, and
statistical part-of-speech tagging.

In Chapter 3 we provide a detailed analysis of the class of contingency rela-
tions, the selection, content, and preprocessing of the selected text corpus, a brief
introduction to supervised machine learninng, and a more specific account of the
SVM learning model used in the experiments. In addition, the lexico-syntactic and
semantic features extracted from the text are analyzed in detail.

Experimental results and additional procedural details are discussed in Chapter
4. We discuss the operation and tuning of the SVM, and compare the results from
one-vs-one and one-vs-all style experimental trials.

Chapter 5 concludes the thesis, providing an overview of the relative success
of the method and additional comments on the efficacy of learning models to this
and more general tasks. Future work and potential applications of the procedures
developed here are outlined.

Tables providing error analysis, trained parameter values, and other information

are included for each experimental trial in Appendix A.



CHAPTER TWO
Related Work

The application of machine learning to semantic argument identification and
classification is a relatively recent development, in part due to the prior lack of ap-
propriately annotated corpora. In this chapter, we examine both the development of
theories of semantic structure and the formalisms used to express them, and various

applications of machine learning to related tasks.

2.1 Rhetorical Structure Theory

Rhetorical Structure Theory was developed by a research group headed by Bill
Mann (Mann 1984), in response to a recognized lack of available theories for discourse
structure and function - in particular for the task of computer generation of natural
language text. RST is essentially a formalism that explains coherence in text. That
is, given some set of text spans (in a typical case, adjacent sequences of words in a
sentence) RST seeks to describe the relationship of one to the other in terms of a
specific role.

Relations identified in RST can be mononuclear or multinuclear. In the former,
there is a distinct “best” choice for the NUCLEUS in the relation. In the latter, there
are multiple selection for the NUCLEUS role that can provide an adequate account
of the associated semantic structure. The more peripheral relation is labelled the
SATELLITE. Prior to the creation of a discourse structure using these relations, the
text is separated (either manually or using a statistical procedure) into minimal text
spans associated with a particular relation; these text spans are known as elementary
discourse units, or EDUs. In some instances, this process is straightforward. For

example, the ATTRIBUTION relation is frequently associated with attribution verbs,
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such as said and stated, or by phrases such as according to. However, syntactic
ambiguities and exceptions occur frequently for many of the relations indicated below,
and thus require more detailed treatments.

In the Discourse Tagging Reference Manual, Carlson and Marcu note that the
78 distinct relations recognized by RST can be partitioned into a compact framework
of relations sharing semantic meaning. This list is given below:

Attribution: attribution, attribution-negative

Background: background, circumstance

Cause: cause, result, consequence

Comparison: comparison, preference, analogy, proportion

Condition: condition, hypothetical contingency, otherwise

Contrast: contrast, concession, antithesis

Elaboration: elaboration-additional, elaboration-general-specific, elaboration-part-whole,
elaboration-process-step, elaboration-object-attribute, elaboration-set-member, ex-
ample, definition

Enablement: purpose, enablement

Evaluation: evaluation, interpretation, conclusion, comment

Explanation: evidence, explanation-argumentative, reason

Joint: list, disjunction

Manner-Means: manner, means

As discourse structures are constructed hierarchically, any pair of text spans
may serve as a single satellite or nucleus for some relation appearing further up in the
discourse tree. Furthermore, a constituent EDU may be split by an embedded phrase
(such as an appositive or parenthetical phrase) representing a separate EDU. Such
constituents must be addressed using artificial relation tags in order to reconnect them
under a single relation heading, further complicating the representational scheme.

In spite of these complications, and other known difficulties (Forbes 2001),
(Joachims 1999), RST provides a relatively compact and well-defined set of rules for

constructing shallow semantic parses of sentences.
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2.2 Discourse Processing
In order to apply theories such as RST to practical tasks such as the automatic
annotation of large corpora, we require both computational tools and a more complete
account of the lexical and syntactic elements appearing in open text that cue for the
relation sets given. In the following sections we describe one such tool and several

related corpus studies.

2.2.1 Discourse Segmentation and Parsing

One approach to automated discourse processing involves the application of
a series of probabilistic models to identify discourse units in individual sentences
(discourse segmentation) and select the “best” discourse parse tree from the auto-
matically generated discourse segmented lexicalized trees (discourse parsing) (Soricut
and Marcu 2003). The model in this research is trained on a publicly available cor-
pus consisting of approximately 7000 sentences drawn from 385 Wall Street Journal
articles (RST-DT 2002). Every document in the corpus is associated with a manually-
constructed discourse structure (in tree form) built in the style of Rhetorical Structure
Theory (discussed in a later section).

The discourse segmenter adopts a statistical model that determines probabili-
ties for the discourse boundary insertion at all possible locations in a sentence using
both lexical (word-level) and syntactic (part-of-speech annotated syntactic trees) in-
formation derived from the RST Discourse Treebank (RST-DT 2002). For any given
possible boundary, the segmenter subsequently inserts a boundary given a sufficiently
high probability.

The initial corpus used to build the RST-DT corpus comprises 110 different
rhetorical relations. For the SPADE tool (a series of scripts implementing both the
automatic discourse segmenter and the discourse parser), Soricut and Marcu com-

pressed these relations according to work performed by (Carlson et al., 2003) into
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a set of 18 superordinating labels. The RST-DT corpus consists of 385 Wall Street
Journal articles drawn from the Penn Treebank, an ongoing project to provide a mas-
sive, wide-coverage text corpus manually annotated with syntactic trees. The use of
such corpora is desirable, as they provide a “gold standard” benchmark for tagging
accuracy (in this case, discourse structures in the same form as those generated by
the software), and a common reference point for performance comparison between
systems.

The discourse segmenter implemented in SPADE processes the Charniak parsed
input text into a series of non-overlapping segments called elementary discourse units,
or EDUs. These are in all cases categorized either as the NUCLEUS or SATELLITE
of some rhetorical relation identified in the full sentence. Generally, the NUCLEUS
consists of the central idea or statement, while the SATELLITE(S) provide peripheral
information (Jurafsky and Martin 2000). This is a direct consequence of the asym-
metry observed in most discourse relations (for example, the subordination of one
argument by another).

It should be noted that in this automatic process, the rhetorical relation that
SPADE identifies will in many cases not match in class or composition that we are
interested in, as the class of contingency relations is split among a number of su-
perordinating relations in RST. Nevertheless, the discourse structures produced by
SPADE can provide valuable insight into the semantic organization of the text under

consideration.

2.2.2 Discourse Connectives

(Creswell 2004) describe a corpus study in which discourse connectives are lo-
cated and annotated for the purpose of developing algorithms to resolve anaphoric
expressions (pronoun coreference). In this work, the authors explore the difference

between structural and discourse connectives, using as a theoretical basis the Dis-
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course Lexicalized Tree Adjoining Grammar, or DLTAG (Forbes 2001). The DLTAG
itself is a formalism in which tree structures for predicate-argument dependancies are
recursively modified by auxiliary trees encoding adjuncts to the initial structure.

The authors derive a series of heuristics for improving the decisions made by
annotators in locating discourse connectives and labeling associated arguments. In
doing so, they note the broad syntactic variety of potential arguments for a set of cues
that overlaps with the ones examined in the experiments carried out in this work.

The authors note that while discourse connectives are easily identified, the
actual associated discourse structure and relation involved in any particular case is
not completely addressed in current linguistic theory, let alone related computational
approaches. Expanded analysis of large-scale corpora is therefore essential to realistic
progress in this area.

A method for the annotation of both discourse connectives and their argu-
ments is presented in (Miltsakaki 2002), using as a theoretical basis previous work
demonstrating the effectiveness of integrating sentence level structures with discourse
level structures using tree-adjoining grammars such as DLTAG. They note that the
use of such grammars allows for the separation of the compositional elements of
discourse meaning (that is, those described by the trees constructed) from the non-
compositional elements (such as those that are realized through inferential analysis
and anaphora resolution).

This provides an elegant and effective method for attacking the problem of dis-
course structure automatically. It avoids in part the problems associated with making
an initial (‘arbitrary’ according to the authors) selection of discourse relations to be
examined, instead beginning with the task of locating discourse connectives and their
associated arguments. This reasoning is mirrored in the approach presented in this
thesis, where sentences containing the requisite discourse connectives are extracted

and subsequently annotated with syntactic, semantic, and grammatical information.
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2.2.3 Statistical Approaches to Role Labeling

A series of statistical classifiers are used in Automatic Labeling of Semantic Roles
to identify semantic roles filled by constituents of a sentence (Gildea and Jurafsky
2000). The experiments include both identification of semantic roles in previously
segmented sentences, and a more complex task in which the sentence is automatically
segmented and subsequently analyzed for semantic roles.

Gildea and Jurafsky address a number of points directly related to the work
presented here. First, they make a convincing case for the use of shallow semantic
interpretation of sentences in the development of systems such as those used for
Question Answering and information extraction.

A series of target words are identified as having meaning associated with the
desired semantic frame, and for each of which examples from the corpus are drawn
which represent a full range of existing lexico-syntactic patterns. Thus, as in the
work presented here, the sentences extracted for the purpose of training and testing
the system do not comprise a statistically representative spread of those sentences in
open text, but rather provide a complete account of the specific relations that are of
interest in the associated classification task.

The authors present a detailed treatment of features selected for use in their
experimental systems, including the Parse Tree Path feature, defined as the path from
the target word to the desired sentence constituent. As in the work presented here,
this path, composed of a sequence of part-of-speech values, is treated as an atomic
value.

In addition to providing a solid theoretical basis for the development of the
features used in our system, the research of Gildea and Jurafsky suggests that data-
driven techniques for semantic interpretation constitute an effective approach that
may aid in generalizing systems that work with “shallow” semantic parses in limited

domains to more sophisticated tasks. Prior to such methods, semantic parsing sys-
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tems relied heavily on complex human-generated grammars linking semantic roles to
specific syntactic structures. Such grammars are problematic, particularly in cases
where, for example, ambiguity of coreference between pronouns and preceding noun
phrases in the examined discourse results in the failure of the system to establish
proper coherence in the passage. Data-driven approaches avoid the the problems as-
sociated with developing grammars that minimize such difficulties, while at the same
time allowing us to make use of the connection between lexico-syntactic realizations
and underlying semantic roles.

An unsupervised approach using Naive Bayesian classifiers to recognize the
discourse relations CONTRAST, EXPLANATION-EVIDENCE, CONDITION, and ELAB-
ORATION is presented in (Marcu and Echihabi 2002). This work is interesting due
to the fact that these relations are located between arbitrary spans of text using a
system trained on extremely large corpora of automatically extracted examples, a
percentage of which are not explicitly marked by cue phrases.

This work serves to establish the validity of applying machine learning meth-
ods to disambiguating between semantic classes with common cues and syntactic
structures, in addition to identifying performance increases when training on massive

amounts of data.



CHAPTER THREE

Design and Implementation

3.1 Contingency Relations

Contingency relations are classified using six categories (Quirk 1985). These
are CAUSE, REASON, PURPOSE, REsSuLT, CONDITION, and CONCESSION. In the
following sections, we define each relation and provide a selection of frequently ap-
pearing cue phrases associated with that relation. A number of these cue phrases are
ambiguous; that is, they encode more than one relation, or encode semantic struc-
tured outside of the relations considered. The inclusion of ambiguous cue phrases is
important in determining the relative effectiveness of the machine learning component
in the experiments described here, as the distinction between examples appearing in
more than one category may frequently be more subtle than those which are unam-
biguous.

Table 3.1 provides an overview of cue phrase distribution in the combined train-
ing and test corpora. While the cue phrases are predominantly concentrated within
the relation class(es) for which they have been explicitly extracted, they may also ap-
pear in addition to another cue within corpus examples associated with other classes.
Additionally, the cue distribution represented here does not necessarily reflect the
distribution we might expect to find in open text, as this corpus was constructed
to include only those sentences that contain a particular cue (or precede a sentence

containing a particular cue).

3.1.1 Cause
CAUSE is “concerned with causation and motivation seen as established with

some objectivity (Quirk 1985).” This is exemplified in the following example: She

16
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Table 3.1. Cue distribution by semantic class

Number of cues (Percentile)

Cause Concession  Condition Purpose Reason Result
[A Jccordingly 93 (97%) 1 (1%) 1 (1%) 1 (1%) 0 0
[BbJecause 117 (43%) 32 (12%) 6 (2%) 4 (1%) 106 (39%)  4/(1%)
[Cclonsequently 100 (98%) 1 (1%) 0 0 0 1 (1%)
[Tt]herefore 102 (97%) 1 (1%) 0 1 (1%) 1 (1%) 0
[Tt]hus 103 (95%) 1 (1%) 2 (2%) 2 (2%) 0 0
[Aa]lthough 14 (10%) 109 (81%) 5 (4%) 5 (4%) 1 (1%) 1 (1%)
[Ee]ven though 1 (1%) 103 (96%) 1 (1%) 1 (1%) 1 (1%) 0
[Hh]owever 21 (14%) 116 (65%) 17 (9%) 8 (4%) 14 (8%) 2 (1%)
[Nn]evertheless 0 101 (100%) O 0 0
[Nn]onetheless 0 100 (98%) 1 (1%) 0 1 (1%) 0
[Aa]s long as 1 (1%) 3 (3%) 102 (95%) 0 0 1 (1%)
[Aa]ssuming that 0 0 69 (100%) 0 0 0
[Iiln the event that 0 0 47 (100%) 0 0 0
[Pp]rovided that 0 0 54 (98%) 1 (2%) 0 0
[Ss]o long as 0 0 104 (100%) O 0 0
[Lijn order that 0 0 0 18 (100%) 0 0
[Tin order to 5 (4%) 2 (2%) 0 101 (92%) 0 2 (2%)
[Li]est 4 (3%) 6 (4%) 4 (3%) 130 (87%) 3 (2%) 1 (1%)
[Ss]o as to 0 0 0 101 (100%) O 0
[Ss]o that 2 (1%) 1 (0%) 1 (0%) 101 (49%) 0 101 (49%)
[Aals 7 (5%) 10 (7%) 6 (4%) 12 (8%) 107 (74%) 3 (2%)
[Fflor 6 (5%) 11 (8%) 4 (3%) 5 (4%) 106 (79%) 2 (1%)
[Ss]ince 5 (4%) 13 (9%) 5 (4%) 4 (3%) 109 (79%) 2 (1)
[Ss]o 33 (14%) 36 (16%) 17 (7%) 18 (8%) 27 (12%) 100 (43%)

died because she had cancer. Causal connectives (discounting causative verbs) may be
split into the following categories: adverbial causal links, prepositional causal links,
subordination causal links, and clause-integrated links.

Certain categories, such as prepositional causal links (cued by phrases such as
because of and due to), are generally used to link a noun phrase with a clause, or
to link two noun phrases in an apposition (Girju and Moldovan 2002), rather than
the main-subordinate argument pairs that we are interested in here. Others, such as
adverbial causal links and clause- integrated links, may be associated with either the
CAUSE or REASON semantic classes, depending on use context (Quirk 1985). CAUSE
correlatives include because, thus, therefore, seeing that, accordingly, and consequently.

Cue phrases for the work presented here have been selected for relative frequency
in the LA Times corpus, specifically by examining a randomly selected 32,500 sentence
block for instances of a particular word/phrase. The five selected cues are: because,

thus, therefore, accordingly, and consequently.



18

3.1.2 Reason

According to (Quirk 1985), REASON is a superordinating term for the following
four categories: cause and effect (expressing the perception of an inherent objective
connection in the real world), reason and consequence (expressing the speaker’s infer-
ence of a connection), motivation and result (expressing the intention of an animate
being that has a subsequent result), and circumstance and consequence (combining
reason with a condition that is assumed to be fulfilled or is about to be fulfilled).

REASON cue phrases include because, since, as, and for. Note that in the ma-
jority of cases, REASON involves a relatively personal and subjective assessment of
a situation. This is demonstrated in the sentence “The flowers are growing well be-
cause I sprayed them.” The grammatical and syntactic structure of this sentence is
virtually identical to that of the example given for the CAUSE relation; the difference
is that this is semantically understood not to be a description of fact, but of opin-
ion. The definition of REASON given here is particular to (Quirk 1985), and serves
to distinguish at a finer granularity examples of this relation from those which are
subsumed by PURPOSE under other definitions. We retain only this definition as it
provides a basis upon which to distinguish the relative success or failure of different
feature vectors in classifying instances from the test corpus that exhibit such semantic

subtlety.

3.1.3 Purpose

PURPOSE clauses are adjunct (adverbial and attributive), more often infinitival
than finite, and typically indicate a result that has yet to be achieved. As a conse-
quence of this, PURPOSE clauses overlap with those of RESULT both in meaning and
in subordinators.

PURPOSE clauses in the infinitive form are introduced by the cue phrases to,

so as to, and in order to. Finite clause patterns include so that, so, in order that.
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The more formal lest is also considered here, and is considered to be sufficiently
representative of the constructions within which other unambiguous negative patterns
appear. The following finite clause example illustrates the PURPOSE relation: The
school closes early so that the children can come home.

The cue phrases selected for PURPOSE are as follows: so that, in order that, in
order to, so as to, and lest. The so that cue overlaps with an identical cue appearing

in the RESULT relation.

3.1.4 Result

REsuLT clauses, as stated above, differ from those of purpose primarily in
that they indicate a result that has already been achieved. RESULT clauses are
introduced by the subordinators so that and so. It should be clear that the subtlety
of the distinction between result and purpose, in terms of applying a machine learning
algorithm, can provide valuable information about the usefulness of various features
in the feature vector. An example using an identical cue to that provided in the
example provided for PURPOSE is as follows: We paid him tmmediately, so that he

left contented.

3.1.5 Condition

CONDITION clauses indicate a potential result as a consequence of a particu-
lar condition. Conditional clauses may be direct ( “If you put the baby down, she’ll
scream”) or indirect ( “She’s far too polite, if I may say so”). There are a large num-
ber of conditional subordinators, including as long as, so long as, assuming (that),
given (that, in case, in the event that, just so (that), provided (that), and supposing
(that).

Conditional clauses may also be introduced by temporal subordinators; in cer-

tain cases these overlap with the regular subordinators. Such instances include before,
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as long as, when, whenever, and once. For example, He will leave as long as she does.
The cue phrases selected for this series of experiments are as follows: as long as,

assuming (that), provided (that), in the event that, and so long as.

3.1.6 Concession

CONCESSION is essentially the inverse of condition; it indicates circumstances
in which a result would ensue irrespective of the concessive clause. This is illustrated
succinctly in the following example: “It was an exciting game, although no goals were
scored”.

Concession clauses, as with condition clauses, are introduced by a large number
of cue phrases. These include although, (even) though, while, granted (that), even if,
yet, still, however, nevertheless, nonetheless, notwithstanding, anyway, anyhow.

The cue phrases selected for this series of experiments is as follows: although,
even though, nevertheless, nonetheless, and however. It is important to note that while
certain encodings of these cues are ambiguous, the ambiguity results from examples
outsitde the set of contingency relations. That is, ambiguity in CONCESSION never

results from overlap with condition, for example.

3.2 The Corpus

We have assembled a corpus from the L.A. Times text collection. Stripped of
HTML tags, header information, tables, and figure references, the corpus contains
approximately 3.4 million sentences. For simpler handling, the corpus was split into
96 files, each consisting of 35,000 sentences. A sentence splitter (implementing a
two-phase process for locating non-sentence boundary punctuation and subsequently
writing out corrected paragraph splits) was used to rewrite the contents of these files
for further processing, tagging sentence boundaries and discarding overtly malformed

examples.
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A simple regular expression based Perl script was used to extract all sentences
containing or immediately following a particular discourse connective from the entire
data set, yielding approximately 210,000 sentences for the full discourse connectives
set.

From this set, we manually selected and annotated approximately 100 sentences
for each predefined cue phrase encoding each of the six contingency relations. For
certain cues, fewer than 100 examples were present in the corpus, as can be seen in
Table 3.1.

Sentence selection was performed using contextual information within and prior
to each sentence according to the guidelines from (Quirk 1985) outlined in the previous
section. In some cases, the candidates for selection were obvious, particularly for cue
phrases specific to a single contingency relation. In other cases, the selection was more
difficult. For example, when selecting examples of the because cue shared by CAUSE
and REASON, a sentence such as “I had to stay over an additional night because
America West had overbooked the return by siz seats” was classified as CAUSE due to
the fact that the author was providing an objective assessment of the situation, while
a sentence such as “I believe in a strong country because people mistake gentility for
weakness” was classified as REASON because of the inherent subjectivity present in
statements of belief.

The argument boundary annotations were performed based on guidelines pro-
vided for the RST-DT corpus (Carlson et al. 2003). These are discussed in further
detail in Section 3.4.1. As this series of experiments is also concerned with rela-
tions spanning an inter-sentential context, sentences beginning with a particular cue
phrase were grouped with the preceding sentence, and a context tag was added to
ensure separation of each relation instance.

All 2,600 sentences were automatically parsed into syntactic trees (Charniak

1997). Subsequently, grammatical roles were inserted into these trees using the au-
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tomatic grammatical role detector GRD. Additionally, sentence level discourse parse
trees were constructed using SPADE (Soricut and Marcu 2003). These tools are
described in Section 3.4.2.

To aid in feature extraction, the corpus was subsequently converted into an
XML representation. As a preliminary step, all non-XML compliant tags were con-
verted via a direct mapping scheme; in all cases, these conversions maintain a format
similar enough to the original versions to be identified in a manual inspection. While
various standards have been developed for the purpose of conversion and manipula-
tion of corpora in XML, a number of the tools used in the procedure presented here
do not conform to a general XML-compliant format.

As a final step, the pairs of contextually linked sentences were attached at a new
head node inserted locally into the XML file. This was not intended as an explicit
representation of the actual semantic link between these sentences; indeed, it is the
most naive form of attachment possible. Rather, it was added for the purpose of
linking those sentences in a way which did not alter the existing structures. This
allows for some flexibility in later processing of paths to and between arguments in
an inter-sentential context.

This attachment step may in future revisions be replaced by a semantically
and syntactically rigorous tree-adjoining procedure. Such procedures are based on
formalism known as a Tree Adjoining Grammar, or in cases where lexical tags are
present, a lexicalized Tree Adjoining Grammar. Recently, the theory has been ex-
tended to discourse parsing with discourse lexicalized Tree Adjoining Grammars
(Forbes 2001). The authors claim that such a system, which represents lexical-
ized elements with respect to both the source sentence and the extracted discourse
structure, can more completely describe the contribution of such elements to both
the underlying semantics and the syntactic realization. The construction of systems

and concepts such as D-LTAG have been aided by on-going research initiatives such
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as XTAG (http://www.cis.upenn.edu/ xtag/home.html), an attempt to provide a
wide-coverage grammar for the English language using a lexicalized Tree Adjoining

Grammar.

3.3 Supervised Machine Learning

Machine learning experiments may be categorized according to the mechanism
via which the learned model is acquired. Learning procedures are referred to as super-
vised, unsupervised, or semi-supervised depending on this mechanism. A supervised
approach is used in the experiments performed in this work. Briefly, supervised learn-
ing procedures require examples of both inputs and outputs to generate a learned
model. In the problem of classifying contingency relations, the inputs consist of 9-
element vectors of syntactic and semantic features generated from sentences belonging
to these relation classes, and the outputs are simply labels indicating the relation en-
coded by a particular sentence. The learned model is constructed based on patterns
of association between particular feature values and the six labeled classes. We use
a supervised approach because these six classes (cause, concession, condition, pur-
pose, reason, and result) are known, and fully represent the superordinating class
contingency.

Following construction of the learned model (the training procedure), the sys-
tem is tested on unseen data instances in which inputs but no outputs are provided.
The performance of the system (in terms of accuracy, precision, recall, and various
error measures) may then be computed based on known correct outputs for unseen
instances. One disadvantage of this method is that known outputs (in our case, se-
mantic class labels) must be generated without error for all of the training and test
data prior to applying the machine learning procedure. For large corpora this can
be a difficult and time-consuming task, and is typically performed by a group of

independant annotators.
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Conversely, in an unsupervised setting, outputs are not provided and the learn-
ing model is acquired purely based on patterns appearing in the input. Such an
approach is inappropriate for our task, as we wish to locate patterns specific to the
semantic relations being considered and not, for example, patterns of syntactic sim-
ilarity that would cause examples from multiple relation categories to be grouped
together. Were we not fully cognizant of the six contingency relation classes, we
could adopt a semi-supervised approach in which the pattern classification is not
forced, providing an opportunity for the location of more legitimate patterns (in our

case, semantic class groupings).

3.4 Support Vector Machines
3.4.1 Background

The theoretical basis for Support Vector learning is outlined by Vladimir Vapnik
in his seminal work (Vapnik 2000). This work appeared as a response to difficulties
encountered in processing high-dimensional data efficiently in various classification
problems. Support Vector methods have recently been adopted in the construction
of classifiers for a wide variety of automatic text processing systems.

The popularity of Support Vector Machines has increased primarily due to the
fact that they are universal classifiers and can build classification models efficiently
irrespective of the dimensionality of the feature space, which may be extremely large
when attempting to create, for example, systems for lexical classification. Addition-
ally, while the most basic SVMs learn linear threshold functions corresponding to
linear classifiers, they can be adapted via the insertion of a kernel function to learn
a variety of other classifiers. The most popular of these are polynomial classifiers,
radial basis function networks, and three-layer sigmoid neural nets. Most SVM imple-
mentations also make provisions for the construction of user-defined kernel functions

for specialized tasks such as the manipulation of string subsequences (Lodhi 2002).



25

SVMs have recently been used in combination with an active learning procedure
to perform several text classification tasks (Tong and Koller 2000). As is generally
the case, the objective of this work is the creation of a classifier that performs well
on unseen future instances. The distinguishing feature of this work, however, is the
confirming evidence that active learning with SVMs can reduce the need for labeled
training instances, in many cases by an order of magnitude with no reduction in
classification performance.

A method for domain independent shallow semantic role parsing via a machine
learning algorithm based on the SVM core is presented in (Pradhan 2003). They
report a precision and recall of 84% and 75% respectively on assigning semantic
labels to the PropBank corpus. The system presented by these authors uses a series
of features identical to those introduced previously by Gildea and Jurafsky: Predicate,
Path, Phrase Type, Position, Voice, Head-Word, and Sub-Categorization. All of these
features (except for the predicate) are extracted from a syntactic parse of the sentence,
both automatically generated using the Charniak parser and human-corrected. The
experiments carried out in this research concern both argument identification and
argument classification. For the classification procedure, the authors note that head
word and predicate were the most salient features (Pradhan et al. (2004)).

SVMs can be applied to a wide variety of of generalized data classification
problems (Chang and Lin 2001). The authors provide a simple overview of problems
associated with kernel selection, data scaling, cross-validation, grid-search for param-
eter estimation when using Radial Basis Function kernels, and outline a proposed

procedure for using the libSVM-2.5 software on real-world problems.

3.4.2 Learning Model
The simplest SVM implementation learns a linear threshold function (a linear

classifier). However, the practicality of the SV algorithm for a wide range of problem
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sizes arises from the fact that it can use kernel functions which enable us to perform
all necessary computations in the input space even though all data is transposed
into a high-dimensional feature space via a non-linear mapping. This is a remarkable
property, since independence of the learning procedure from the dimensionality of the
feature space means that the system generalizes even when a large number of features
are present, something that is not true of statistical procedures such as Naive Bayesian
classifiers or decision-tree learners.

In order to build a learning model, salient patterns or features are extracted
from the training data for each instance. Each set of patterns is associated with a
particular classifying label that consititutes the desired output. As an example, our
system extracts 9 features from each sentence in the corpus (described in 3.5.3) and
associates that feature set with the appropriate semantic label.

In general, given some N-dimensional set of patterns x; and associated classi-

fying labels y; (where y; € {+1, —1} for binary classification problems), that is,

(X1, Y1)y -y (X0, 1) € RN x {£1} (3.1)

we wish to describe a function f : R¥N — {£1} that will assign the correct class label
y t0 some unseen vector x.
Support Vector Machines map the original data into some high-dimensional

feature space via the nonlinear map ® : RN — F and evaluate the dot product
K(z,y) = (2(z) - 2(y)) (3.2)
that corresponds to the computation of the following linear decision function:
f(x) = sign((w - x) +b) (3-3)

In this space, an optimal separating hyperplane is constructed to separate the data.

In the simplest case, where the data is linearly separable, the construction of this
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hyperplane is as follows. Given our N-dimensional set of patterns as above, we can

describe a separating hyperplane of the form:
(w-z)—b=0, weR" (3.4)

where (w - z) indicates the inner product between vectors w and z, and w is a vector
of weight parameters.

The separating hyperplane is optimal if it bisects the space containing the
training vectors without error and with the distance to the closest vector (the margin
of separation) maximized. The optimal hyperplane is unique, and in the case of
completely separable data may be extracted by solving the quadratic programming

problem

1 1.0
W(a) = Zai 3 Zaiajyiyj(xi - Zj) (3.5)
i=1 irj

whose solution takes the form of the weight vector w, a linear combination of the

vectors in the training set:
!
w=>Y iz, o >0 (3.6)
i=1

In the case of binary classification, the margin of separation between the closest
vectors can be maximized subject to the constraints (w-z) — b < —1 for y; = —1,
and (w-x) —b > 1 for y; = 1. These can be derived in any case by simply rescaling
w and the factor b such that the margin (equal on both sides) becomes 1. It can
be shown that only those vectors that satisfy these inequalities (Vapnik, 1999) can
have nonzero coefficients of o in the expansion noted above. These are the support
vectors, and by definition provide all information required to address the classification
problem. See Figure 3.1 for a graphical representation of the optimal hyperplane in
a simple linear classifier.

Linear classifiers are frequently inadequate, even for very simple classification

tasks. Take as an example a 2-dimensional plane with axes x; and x5, in which
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Figure 3.1: Optimal Separating Hyperplane (Linear SVM). The margin indicated rep-
resents the maximal margin of separation between the hyperplane and those support
vectors (flattened to 2-dimensions here) with o = 0.

we wish to isolate the points satisfying z? + 22 < 1. As the separation boundary is
circular, a linear classifier does not suffice. In order to address cases in which the data
is linearly non-separable, (Vapnik 2000) provides a generalized form of the optimal
hyperplane, uniquely determined by the vector w corresponding to the solution of the
optimization problem
!
o(u,6) = (- w)+ C (L6 57)
i—
where (' is a penalty parameter on the error term introduced through the non-negative
variables & > 0. These variables modify the previous constraints used to determine
the maximum margin of separation so that they now read (w-z) —b < —1 — ¢ for
y;=—1,and (w-z) —b>1—¢ for y; = 1 (where each y; is an assigned label in our
binary classification).
Recalling from before the basic form of the linear decision function (Equation
3.3), we can describe a set of decision functions that are both identical in function
to those linear functions in the high-dimensional feature space and additionally fulfill
our requirement for the location of a non-linear classification boundary in the input

space. For each training vector x;, we substitute the left hand side of Equation 3.2
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into our decision function to obtain the most general form associated with Support
Vector classifiers in terms of some kernel function K:

n

f(z) = sign 21 v K (x, ;) (3.8)

=
For this series of experiments, we use a radial basis function (RBF) kernel K =
exp{—7|z—x;|*}, where C (a penalty parameter for the error term) and ~y are typically
tuned via cross-validation to the problem instance. In classical RBF machines (such
as the type used here) determining the values of v and C are based on heuristics;
that is, they do not generalize to well-known problem instances, but are generated as
needed (Vapnik, 1999).

The 1ibSVM package includes a Python script, grid.py, to automatically deter-
mine the most appropriate values of C' and ~ for a particular problem instance. In
the experiments performed here, it executes a 10-fold cross-validation for parameter
estimation given a particular range. As per (Hsu, 2002), this method divides the
training data into 10 subsets of equal size, training each of the 10 trained classifiers
on the remaining 9 sets using all (C,7y) pairs in the range specified. It should be em-
phasized that this technique produces a “best-estimate”, and does not always produce
parameter values that maximize classification accuracy.

A graphical plot of cross-validation accuracy is constructed incrementally using
training data during each parameter tuning run. Examples for the 9 feature, manual
Argument Boundary Detection, CAUSE vs. CONCESSION and the 9 feature, manual
Argument Boundary Detection, CAUSE vs. ALL data sets are included in Figures 3.2
and 3.3.

In order to allow for salient analysis of the results, we performed a series of
pairwise classification experiments in which all 15 possible pairings within the 6 classes
were used to train a particular instance. All text data was mapped to numeric data

(a constraint of the libSVM-2.5 implementation) via a hashing scheme in which text
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Figure 3.2: Grid training visualization (One-Vs-One): Dashed contours in this plot
describe areas of cross-validation accuracy corresponding to a range of (C,y) pairs.
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strings corresponding to unique feature values were assigned real values and hashed
into one of nine tables (one hash table for each feature). It is important to note that
while more sophisticated methods exist for numerical feature representation (gray-
code schemes, or more generally using n numbers to represent n-category features
(Chang and Lin 2001)), the associated advantages due to numeric stability are only
seen when the category magnitude is sufficiently low.

Finally, all data was scaled to a range from -1 to 1, both in order to avoid
numeric difficulties due to over- and under-flow, and most critically to avoid biases
due to groups of feature values located in larger numeric ranges.

The 1ibSVM-2.5 machine learning tool, referenced above, was used in these
experiments. It is freely available from http://www.csie.ntu.edu.tw/ cjlin/libsvm/,

and includes implementations of a variety of kernel functions.

3.5 Implementation

Machine learning approaches to discourse relation recognition and classification
typically take advantage of large semantically annotated corpora such as FrameNet,
a semantically annotated corpus based on the 100-million word British National Cor-
pus, PropBank, a corpus annotated for basic semantic propositions, or the RST-DT
corpus discussed in Chapter 2. In the procedure presented here, we show that a small
group of carefully selected lexico-syntactic and semantic features can be applied to
classify the set of contingency relations in a compact corpus automatically annotated
with syntactic and semantic structures. This follows from the fact that while syntac-
tic realizations are linked to underlying semantic arguments (the subject of linking
theory), the syntactic information alone frequently cannot be used to identify the
presence of a particular relation.

Since a number of the features rely directly on the position and boundaries of

the main and subordinate arguments linked by the existing cue, we initially devel-
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oped an automatic method for the detection of arguments and argument boundaries.
An informal overview of the corpus suggested that the two most frequent argument
patterns arising in the contingency relations are [(SUBORD)-(CUE)-(MAIN)] and
[(CUE)-(MAIN)-(SUBORD)]|. We used an heuristic that initially assumes canonical
form, recursively parsing through XML subtrees until the maximal VP on either side
of the cue word or phrase corresponding to the subordinate and main arguments is
found. If a VP was is found for the subordinate argument, the remainder of the tree
following the main argument is traversed to locate another VP.

During early trials of the feature extraction system, it became apparent that
this heuristic was prone to error, particularly in cases where complex argument rela-
tionships resulted in syntactic overlap not appropriately addressed in the extraction.
Additionally, the heuristic had no method for validating argument order, and forced
the introduction of values to flag instances where no argument was found.

While an additional machine learning procedure for the location of such bound-
aries was the logical choice for solving this problem in a general manner, time con-
straints did not permit such an endeavor. Consequently, the entire set of extracted
sentences was tagged with argument boundaries by hand. In particular, this resolved
difficulties that were encountered with the automatic boundary detector in handling
non-canonical sentences or sentence pairs marked by constructs such as appositions

and anaphora.

3.5.1 Argument Boundary Detection

While multiple annotators were not available to tag argument boundaries for
this data set, rules for tagging argument boundaries were developed for use during
annotation. The theoretical basis for most of these rules is provided by examination
of the Discourse Tagging Reference Manual provided by Carlson and Marcu. Much

of the discussion of syntactic phenomena with relation to identifying and extracting
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elementary discourse units is relevant to the task of extracting arguments such as
those being examined here; indeed, virtually all of our examples fall into a single
syntactic device class, that of “Subordinate Clause with Discourse Cue” (DTRM
1999)

Phrases that (for our purposes) are semantically empty were excluded from
the arguments. These included introductory comments such as “In fact...” and
“Remarkably...” and any type of attribution such as “..., said Mr. Doe”. Attributions
preceding or following the main argument body may legitimately be discarded as they
will always be labelled as such in the discourse structures output by SPADE.

Phrase structures following a coordinating term such as “and” were excluded
from the argument boundaries unless the remainder of the phrase appeared to corefer
strongly with the preceding argument. An example of such an argument structure

appearing in the extracted corpus follows:

It is highly improbable that the policies towards unification will,
being essentially nonpartisan, vary on either side of the dividing line.
Therefore, appeals for gradualism are curiously irrelevant, and assur-
ances to the Soviet Union that no effort will be made to accelerate
the process could be dangerous.

In certain cases, the argument structure is implicit, and is not adequately cap-
tured by our tagging procedure. Consider the sentence “Museum officials said the
stolen artifacts are irreplaceable and therefore priceless, but would be difficult to sell.”
‘Priceless’ in the second argument is understood to stand for ‘the stolen artifacts were
priceless’, a construct that would be grammatically awkward in the original sentence
due to repetition of the noun phrase. As we will see later, such examples, while
relatively rare, pose a problem for our feature extraction mechanisms which do not
directly account for such implicit arguments. In the current system, the argument

boundaries are placed around ‘priceless’ or given as ‘not present’ at the discretion of

the human tagger.



34

Corpus examples where one argument was syntactically bounded by another
were encountered with some frequency, as in the following example: “The United
States, lest it be forgotten, is about to begin its ninth consecutive year of limits on
Japanese car imports...”

Here the main argument, reconstructed, appears to be “The United States is
about to begin its ninth consecutive year of limits on Japanese car imports...”. Dis-
regarding the unwritten elaboration, the remaining argument inclusive of the cue is
“lest it be forgotten” — where it corefers with the objectively stated fact in the pre-
vious argument. The tagging procedure here, and indeed, the functional methods
for extracting meaningful paths and subtrees from the automatically generated trees,
provide no direct method for explicitly representing such splits. Consequently, the
subsumed argument is tagged as in canonical examples, while the boundaries of the
split argument are placed around the full structure.

The complexities of syntax are such that it would be impractical to develop
heuristics for addressing every such example. Consequently, we attempt to find sim-
plifications that avoid overtly altering the semantic aspects of the passage we are
interested in. However, we will examine one further example in which the tagging
heuristics followed here result in a significant semantic alternation to the original

meaning. Consider the following sentence, extracted with the cue in order that:

“If we are being brought to our knees, so to speak, by the need for
more priests, is it not in order that we may understand with greater
humility and love who the Lord of the harvest really is,” he asked?

For our purposes, the desired semantic relation is encoded even when the phrasal
elements associated with the question and attribution are eliminated from the original
sentence: “We are being brought to our knees, so to speak, by the need for more priests
in order that we may understand with greater humility and love who the Lord of the

harvest really is.”
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This is, of course, a dramatically different statement; were this part of a full-
fledged discourse processor, we would want to avoid situations in which our boundary
tags created the suggestion of fact from a rhetorical question, suggestion, allegory, or

any other form of unqualified opinion.

3.5.2 'Tools

Charniak’s Parser is a tool developed at Brown University under the super-
vision of Dr. Eugene Charniak to automatically annotate sentences with syntactic
parse trees. While tools have been developed which out-perform this tool when prop-
erly trained and used on sufficiently large corpora, we selected Charniak’s parser as
it presents a well-documented and highly accurate account of syntactic structure on
a wide variety of corpora. A full description of the statistical method implemented
in this parser is available in (Charniak 1997). Briefly, for a given sentence the tool
returns the parse 7 for of a sentence s for which the probability that 7 is represents
the correct parse is the highest. Initial training of the system (inference of grammar
rules and probabilities) is performed using the Penn Treebank.

SPADE, a discourse segmenting and parsing tool developed at ISI/USC, auto-
matically idenfities a list of 18 discourse relations in English text compressed from a
comprehensive list of 110 as described in (Carlson et al. 2003). The relations include
ATTRIBUTION, BACKGROUND, CAUSE, COMPARISON, CONDITION, CONTRAST,
ELABORATION, ENABLEMENT, EVALUATION, EXPLANATION, JOINT, MANNER-
MEANS, ToPic-COMMENT, SUMMARY, TEMPORAL, AND TOPIC CHANGE. These
relations are more coarse-grained than our list of contingency relations. The sys-
tem claims a performance of 75.5% F-score using perfect syntactic trees and perfect
discourse segmentation when the human annotation agreement is 75%.

In its parsing phase, SPADE implements a probabilistic procedure that exam-

ines all legal discourse parse trees for a particular sentence via dynamic programming,
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performing comparisons of legally derived semantic constituents for each text span
encountered and eliminating those with lower probabilities.

SPADE outputs tagged text representations of discourse structures in the style
of RST, modified to provide for adequate handling of discontinuous arguments (this
is described in more detail in a later section).

GRD is a tool developed at the University of Texas at Dallas that automatically
labels grammatical roles in unannotated text. These roles are subject, direct object
indirect object, oblique object, copular, complement, and adverbial. It also provides
verb voice information. The performance of GRD is 87% F-score. At the time of

writing, this tool is not publicly available.

3.5.3 Features

We identified and experimented with a set of 9 syntactic and semantic features.
Their values are determined with the help of several publicly available tools, an in-
house grammatical role analyzer, and a series of Perl scripts for text filtering, XML
conversion, and XML processing. A detailed description of each is provided in the
following section.

To better exemplify each feature, we will consider the following short example:
“Crampton was able to identify the ball, so it was only a one-stroke penalty.” The
syntactic tree of this example sentence enriched with grammatical role tags is shown
in Figure 3.4. Figure 3.8 shows the corresponding discourse structure as provided by
SPADE.

The Cue-Main Path feature (Feature 1) describes the path between the head
node of the main argument and the head of the cue phrase. In each case, the head
node is considered to be the immediate parent in the syntactic parse tree of the text
node corresponding to the first word in the argument or cue. We selected this feature

because of its importance in semantic role detection (Gildea and Jurafsky 2002). The
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i Crampton AUX ADJP-PRDS | 3 it ADVP |
} was L ‘ !
| & S o AUX RB  NP-PRDS |
| able ‘ X was only |
| ! DT N NN
| VP-ACTIVE ¥ a one-stroke penalty |
1 TO VP-ACTIVE |
! to |
1 /VB /NP\ |
| identify the ball

Figure 3.4. Features 1 and 2

feature is primarily designed to encode the syntactic relationship between a specific
argument and the cue anchor which is, in this context, the most relevant link to the
remainder of the sentence(s). This and all subsequent features are represented in the
system as individual strings encoding the appropriate sequence of syntactic, gram-
matical, and grammatical nodes. Note that the star in the following string indicates
the transition from moving “up” the path from the head of the main argument to
moving “down” the path following the shared parent node in the tree structure. The
encoding for the syntactically and grammatically annotated sentence in Figure 3.4 is
NNP-NP-S*IN.

The Cue-Subordinate Path feature (Feature 2) describes the path between the
first node of the subordinate argument and the head of the cue phrase. Functionally,
the construction of this feature is performed as in Feature 1. We include this feature
to further articulate the link between syntactic realization and the associated shallow

semantic parse. The sample encoding is PRP-NP-S*IN.
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NP—‘SBJ VP-ACTIVE-AUX Argl| ;NP—‘SBJ" VP Arg2 |
[N : : ,'I :
= NNP | PRPI :
|Crampton AUX ADJP-PRDS oot ADVP |
| was X ‘ |
| & s o AUX RB  NP-PRDS |
: able ‘ X was only |
| ¥ DT 1 NN
| VP-ACTIVE X a one-stroke penalty |
1 TO VP-ACTIVE 1
| to !
3 e e
! identify the ball

Figure 3.5. Feature 3

The Main-Subordinate Path feature (Feature 3) describes the path from the
subordinate to the main argument. This feature captures syntactic information about
the position of both arguments in relation to each other, a particularly important
relationship when examining semantic relations in an inter-sentential context. Note
that, in this example, the format of this feature (from left to right) begins at the first
node in the main argument, moves up the parse tree path to the minimally shared
syntactic node, and then down to the subordinate argument’s first node. The sample
encoding is PRP-NP-S*S-NP-NNP.

The Subordinate In-order Traversal feature (Feature 4) describes the in-order
traversal of the subordinate clause. This feature is important because it provides a
compact representation of the argument structure as it appears in the automatically
generated syntactic parse tree. We believe that even at this level of semantic granu-
larity, there may be distinct and consistent, differences between argument structures

from one relation to another. This feature includes the direct path from the sentence
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Figure 3.6. Features 4 and 5

root to the argument head in addition to the traversal of the argument itself. The
sample encoding is S-NP-PRP-VP-AUX-ADVP-RB-NP-DT-JJ-NN.

The Main In-order Traversal feature (Feature 5) is the in-order traversal of
the main clause syntactic tree. Functionally, this is constructed in the same manner
as Feature 4. The sample encoding is S-NP-NNP-VP-AUX-ADJP-JJ-S-VP-TO-VP-
VB-NP-DT-NN.

The Flat XML Tree feature (Feature 6) is a flat representation of the Charniak
parse tree constructed via an in-order traversal of the XML-converted representation.
The feature provides a complete and compact representation of the full syntactic
structure of the sentence(s). The sample encoding is SFC-S1-5-S-NP-NNP-VP-AUX-
ADJP-JJ-S-VP-TO-VP-VB-NP-DT-NN-COMMA-IN-S-NP-PRP-VP-AUX-ADVP -
RB-NP-DT-JJ-NN-PERIOD.

The Flat GRD Tree feature (Feature 7) is a flat representation of the syn-

tactic tree augmented with grammatical role labels using the GRD tool. This fea-
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Figure 3.7. Feature 7

ture complements those generated using the Charniak and SPADE parsing tools by
providing a complete account of the grammatical structure of the sentence. Ad-
ditionally, we expect some correlation between subtrees located under particular
grammatical roles and those text spans identified by SPADE. The sample encoding
is NP_.SBJ VP_ACTIVE_AUX ADJP_PRDS VP_ACTIVE VP_ACTIVE NP_OBJD
NP_SBJ VP_ACTIVE_AUX NP_PRDS.

The In-order Discourse Traversal feature (Feature 8) is an ordered list of the
values associated with the rel2par tag generated by SPADE. The rel2par values com-
prise the rhetorical relations that hold between the discourse units identified auto-
matically by SPADE. The order in which they appear provides a compact account of
the semantic organization of the sentence without an explicit description of structural
information. The sample encoding is Cause span.

The All In-order Discourse Traversal feature (Feature 9) is an in-order traversal

of all SPADE discourse tags with the text spans removed. This feature is essentially
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CAUSE

1 2
[Crampton was able to identify the ball] [so it was only a one-stroke penalty .]

(Root (span 1 2)
(Satellite (leaf 1) (rel2par Cause)

(text _!Crampton was able to identify the ball_!))
(Nucleus (leaf 2) (rel2par span)

(text _Iso it was only a one-stroke penalty._!))

)

Figure 3.8. Features 8-9

the SPADE equivalent of the in-order traversal of the Charniak parse tree. The
actual text items have been removed, since given that there are virtually no identical
sentences in the corpus, this would make the feature irrelevant. The sample encoding
is SFC Root span 1 2 Satellite leaf 1 rel2par Cause text Nucleus leaf 2 rel2par span
text.

As a final note, the traversals conducted in features 1 through 6 are made
possible via consulting the manually tagged argument boundaries. These are kept
in files corresponding exactly in form and content to those containing the XML-
converted syntactic trees, but tagged in a simple numeric format (ARG1-HEAD ARG1-
TAIL ARG2-HEAD ARG2 TAIL) corresponding to the beginning and end of each of the
arguments. In the following example, each numeric tag represents a linear position
in the sentence. The final set of four numbers indicate the head and tail of the main
and subordinate arguments as selected by the human annotator according to the
guidelines listed in Section 3.5.1.
<0> Crampton <I1> was <2> able <3> to <4> identify <5> the <6> ball <7> |,
<8> 50 <9> it <10> was <11> only <12> a <13> one-stroke <14> penalty <15>

06914
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A formal account of argument boundaries generally includes the discourse con-
nective (the associated cue) with the argument before which it appears (Gildea and
Jurafsky 2002). As cues do not consistently appear immediately preceding the subor-
dinate argument (for example, sentences in non-canonical form or those in which some
movement rule has been invoked) and due to the necessity of keeping the argument
boundary representation simple, the cue is not included in this argument boundary

representation.

3.5.4  Overview

Figure 3.9 illustrates the implementation steps described in the preceding sec-
tion. Individual arrows within the Feature Extraction module indicate unique parses
of the data.

The features described in the preceding section constitute our hypothesis for
those syntactic and semantic attributes we expect to be most relevant for learning
a “good” classifier, one which will provide for high-accuracy separation of the CON-
TINGENCY relations. In features 1 and 2, we address structural information related
to cue placement relative to the respective arguments, without resorting to using lex-
ical information provided by the cue itself. In feature three, we provide a compact
syntactic representation directly related to the syntactic realization of the encoded
argument. As it is well established in the literature that the argument informs this
realization (albeit not unambiguously), this is an important inclusion. For the same
reason, we include representations of the syntactic subtrees corresponding to each
argument in features 4 and 5. As these representations are necessarily more complex,
future revisions of the feature vector may perform lemmatization of verb forms and
compacting of terminal noun phrases to limit the number of unique feature values.
Feature 6 provides similar syntactic information (and may be subject to the same

future constraints). Feature 7 adds information lacking in the syntactic parse by
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Figure 3.9: System Architecture: Arrows within the dashed-line Feature Extraction
box correspond to individual syntactic, semantic, and grammatical parses. Note that
Automatic ABD is performed in tandem with the actual feature extraction, while
manual argument boundaries are passed in as a separate parse of the data.



44

modifying the syntactic tree with grammatical roles, providing a more complete de-
scription of the syntactic behavior of each argument. Finally, features 8 and 9 provide

broad semantic coverage for each data instance.



CHAPTER FOUR

Experimental Results

4.1 Overview

We performed a variety of experiments designed to provide insight into the
contribution of both lexico-syntactic features and semantic features to classification
accuracy when considering the CONTINGENCY relations. Additionally, experiments
using both the automatic heuristic for location of argument boundaries and the man-
ually tagged argument boundaries were performed on identical data sets.

For all experiments, the corpus described in Chapter 3 was split into training
and testing using a 70/30 ratio. On this data, we performed a series of one-vs-one
and one-vs-all classification experiments. Vectors in the experiment consisted of nine
numeric values in a regular (non-sparse) format. Unique feature values were recorded
as follows, listed here in the order of the features previously described: 519, 1220,
1848, 2357, 2394, 2418, 2320, 1387, and 1504. The total number of unique training
and test examples (sentences or attached sentence pairs) was 2433.

Baselines for all classification results are centered around 50% (we provide dif-
ferent baseline values as the magnitude of examples available for each relation instance
varies). The baselines are computed from the perspective of the class listed in the
left-hand column in each trial. For example, in “Cause vs. Concession”, where there
are 147 examples of Cause and 150 examples of Concession in the test set, were we to
randomly select a class for an unseen test item we would expect to have that selection
result in a “true positive” 49.4% of the time. These baselines are provided in Table
4.1.

Results in each case (except for those indicating feature contribution) are given

both for the SVM operating with default values for C' and ~y, and for approximated

45
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Table 4.1. One-vs-One Classification Baselines (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 49.49 56.98 52.50 55.06 71.01
Concession - 57.47 53.00 55.56 71.43
Condition - 45.49 48.05 64.91
Purpose - 52.57 68.91
Reason - 66.67
Result -

optimal values derived using the grid-search procedure. As we will see, the grid-search
procedure, even when run at a fine granularity, does not always yield parameter values

that result in a performance increase.

4.2 One-Vs-One (7 Features, Automatic Argument Boundaries)

The results presented in Tables 4.2 through 4.5 were obtained using an early
version of the feature extraction system incorporating the previously described auto-
matic argument boundary detection heuristic and lexico-syntactic features only (that
is, no SPADE data). Both results from the SVM learning procedure with an RBF
kernel using default parameters for C' and v and results using kernel parameters
trained using the aforementioned grid-search procedure are included to demonstrate

the benefits of tuning the system.

4.2.1 Default Parameters

Table 4.2. One-vs-One, 7 Features, Automatic ABD (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 58.61 78.49 60.98 54.58 70.62
Concession - 83.27 66.32 59.57 71.63
Condition - 83.07 7417 70.79
Purpose - 60.31 69.00
Reason - 66.67

Result -
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Table 4.3. One-vs-One, 7 Features, Automatic ABD (Precision/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 58.45/55.70 83.82/76.51 58.94/81.88 54.75/96.64 70.62/100.00
(57.04) (79.98) (68.54) (69.90) (82.78)
Concession - 88.03/81.69 63.03/86.93 57.85/98.69 71.69/99.35
(84.74) (73.08) (72.94) (83.22)
Condition - 82.30/80.17 68.75/85.34 69.51/98.28
(81.22) (76.16) (81.42)
Purpose - 61.33/66.67 69.00/100.00
(63.88) (81.66)
Reason - 66.67/100.00
(80.00)
Result -

4.2.2 Grid-Search Parameters

Consistent accuracy gains are achieved through parameter training. Note in
particular the significant improvement (14%) in the pairwise comparison of CON-
DITION vs. REASON. Even when considering highly ambiguous pairings such as
PURPOSE vs. REASON, consistent accuracy improvements (due primarily to a classi-

fication boundary that extends recall performance) are apparent.

Table 4.4: One-vs-One, 7 Features, Automatic ABD, Trained Parameters (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 59.60 84.15 70.38 58.60 73.46
Concession - 88.48 68.38 60.29 76.74
Condition - 84.65 88.75 79.78
Purpose - 64.12 70.50
Reason - 62.90
Result -

4.3 One-Vs-One (9 Features, Automatic Argument Boundaries)

Features 8 and 9 (extracted from the SPADE discourse structures) were included
in a system revision to determine the contribution of RST-style discourse semantic
tags towards system performance. The addition of these features resulted in small but
consistent decrease in system performance for almost all classification pairs. However,
this does not serve the conclusion that the semantic features introduced in the SPADE

data have a negative contribution. In a later section we will see that, at least when
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Table 4.5: One-vs-One, 7 Features, Auto. ABD, Trained Params (Precision/Recall
(f-measure))

# Cause Concession Condition Purpose Reason Result

Cause - 59.71/55.70 85.91/85.91 70.78/73.15 59.68/74.49 75.40/92.62
(57.64) (85.92) (71.94) (66.26) (83.12)

Concession - 90.13/89.54 70.47/68.63 58.85/93.46 76.68/96.73
(89.84) (69.54) (72.22) (85.54)

Condition - 82.91/83.62 86.78/90.52 79.85/92.24
(83.26) (88.62) (85.58)

Purpose - 63.25/76.09 72.57/92.03
(69.08) (81.14)

Reason - 72.00/72.58
(72.28)

Result -

using the “gold standard” manually tagged argument boundaries, this is not the case.

A more consistent explanation may be that the lexico-syntactic and semantic
feature values are interfering with each other during the search for the optimal sep-
arating hyperplane performed by the SVM. This is most likely due to limitations of
the argument boundary detection heuristic. For example, non-canonical form sen-
tences frequently defeat the heuristic, which performs a relatively naive search for
maximally bounding verb phrases on either side of the cue phrase. If such a phrase
is not found for one argument or the other, a default tag is introduced. Distribu-
tions of default tags in the resulting data can create an undesired bias. In addition,
some semantic arguments have consistent syntactic structures that do not support
the assumption of simple VPs that describe the main body of the argument. In such
cases, the heuristic may find VPs that describe some syntactic pattern unrelated to
the semantic argument we are interested in.

Results from the experimental trials with 9 features and automatically detected

argument boundaries are given in Tables 4.6 through 4.9.
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4.3.1 Default Parameters

Table 4.6. One-vs-One, 9 Features, Automatic ABD (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 57.28 69.81 63.41 59.71 70.62
Concession - 73.98 64.26 63.18 71.64
Condition - 62.59 70.42 66.29
Purpose - 63.74 69.00
Reason - 65.59
Result -

Table 4.7. One-vs-One, 9 Features, Automatic ABD (Precision/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 61.90/34.89 72.84/73.83 64.67/65.10 58.52/89.93 70.62/100.00
(44.62) (73.34) (64.88) (70.90) (82.78)
Concession - 74.56/82.35 62.69/79.08 62.69/82.35 71.49/100.00
(78.26) (69.94) (71.18) (83.38)
Condition - 60.61/51.72 66.67/77.59 67.28/93.97
(55.81) (71.72) (78.42)
Purpose - 63.19/74.64 69.00/100.00
(68.44) (81.66)
Reason - 66.85/99.19
(79.88)
Result -

4.3.2 Grid-Search Parameters

While classification accuracy drops when using trained parameters (Table 4.8,
this does not necessarily indicate that the learned model is “worse”; frequently, the
new split of the text data results in more evenly balanced classification performance
across both classes. For example, while we may have fewer “true positives” for the
class listed in the left-hand column, we may see a parallel increase in “true negatives”

or examples of the other class involved in the trial that were classified correctly.
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Table 4.8: One-vs-One, 9 Features, Automatic ABD, Trained Parameters (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 56.95 71.30 70.73 61.54 68.72
Concession - 76.95 67.69 63.18 71.63
Condition - 76.38 78.33 70.79
Purpose - 67.18 70.50
Reason - 65.59
Result -

Table 4.9: One-vs-One, 9 Features, Auto. ABD, Trained Parameters (Preci-
sion/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result

Cause - 62.03/32.89 71.86/80.54 74.44/66.44 61.96/76.51 70.44/95.97
(42.98) (75.96) (70.22) (68.48) (81.24)

Concession - 84.21/73.20 69.79/67.97 63.78/77.12 75.84/88.24
(78.32) (68.86) (69.82) (81.58)

Condition - 75.00/72.41 77.12/78.45 75.81/81.03
(73.68) (77.78) (78.34)

Purpose - 68.31/70.29 73.09/90.58
(69.28) (80.90)

Reason - 67.24/94.35
(78.52)

Result -

4.4 One-Vs-One (7 Features, Manual Argument Boundaries)

For the following trials, the feature extraction system based on automatic ar-
gument boundary detection heuristic was modified to use the manually annotated
boundaries described in Chapter 3.

In almost every trial listed in Table 4.10, the classification accuracies here are
lower than those recorded for the trials using the automated argument boundary de-
tection heuristic (although still above the associated baseline). Potential sources of
this discrepancy may include the previously described possibility of a bias introduced
by the heuristic. A direct way to address this hypothesis would include application
of the system to a massive corpus providing a wider selection and distribution of syn-
tactic forms and examine the resulting classification accuracies to determine whether
such a bias existed. Errors or unidentified biases in the manual tagging may also

account, for the decrease in accuracy. Manual annotations are typically performed
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by a group of trained individuals, with resulting corpora adjusted for inter-annotator
agreement and vetted for tagging errors. This was not possible here due to time

constraints and the fact that external annotators were not available.

4.4.1 Default Parameters

Table 4.10. One-vs-One, 7 Features, Manual ABD (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 55.29 65.66 58.89 54.95 70.62
Concession - 69.89 56.01 55.23 71.16
Condition - 60.63 64.17 72.47
Purpose - 59.54 69.00
Reason - 66.13
Result -

Table 4.11. One-vs-One, 7 Features, Manual ABD (Precision/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 54.86/53.02 84.25/47.65 56.59/83.26 54.89/97.97 70.62/100.00
(53.84) (60.88) (67.38) (70.36) (82.78)
Concession - 87.50/54.90 55.02/89.54 58.10/67.97 71.16/100.00
(67.46) (68.16) (62.64) (83.16)
Condition - 54.08/91.38 58.52/88.79 70.30/100.00
(67.94) (70.54) (82.56)
Purpose - 61.26/63.04 69.00/100.00
(62.14) (81.66)
Reason - 66.85/97.58
(79.34)
Result -

4.4.2 Grid-Search Parameters

When classification trials are performed using trained parameters (Tables 4.12
and 4.13), moderate improvements in accuracy are observed for a number of class
pairs, including CONCESSION vs. PURPOSE and PURPOSE vs. REASON. As in
previous trials, note that all trials involving RESULT perform at or near the baseline
(final column in Table 4.12), due to the lack of sufficient training instances. This
will be addressed in future revisions of the system through the inclusion of additional

discourse cues.
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Table 4.12. One-vs-One, 7 Features, Manual ABD, Trained Parameters (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 53.64 66.42 58.19 54.21 69.19
Concession - 69.52 61.17 56.32 71.16
Condition - 60.24 67.50 72.47
Purpose - 64.50 68.00
Reason - 67.74
Result -

Table 4.13: One-vs-One, 7 Features, Manual ABD, Trained Parameters (Preci-
sion/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 52.87/55.70 82.61/51.00 58.38/67.79 55.94/75.84 70.19/97.99
(54.24) (63.06) (62.74) (64.38) (81.78)
Concession - 82.57/58.82 60.64/74.51 58.42/72.55 71.98/97.39
(68.70) (66.86) (64.72) (82.78)
Condition - 53.85/90.52 61.18/89.66 70.30/100.00
(67.52) (72.74) (82.56)
Purpose - 64.90/71.01 69.07/97.10
(67.82) (80.72)
Reason - 68.18/96.77
(79.98)
Result -

In most trials, the accuracy gain attributed to features 8 and 9 is moderate,
and in only two cases is the contribution negative. In considering these results, it is
important to remember that there is not a 1-to-1 relationship between the semantic
roles defined in RST (and by association, SPADE) and the contingency relations con-
sidered in these experiments. It is therefore difficult to make qualitative statements
regarding the contribution of these features. Additionally, many of the cues used
in these experiments are not recognized by SPADE as potential candidates for the
encoding of a particular relation, and thus will never appear in a text span produced

by SPADE following a desired semantic relation.

4.5 One-Vs-One (9 Features, Manual Argument Boundaries)
Table 4.14 shows the performance results computed for each pair of discourse

relations when using both SPADE features and manually detected argument bound-
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aries. These results correspond to the latest revision of the system for one-vs-one

trials.

4.5.1 Default Parameters

As discussed previously, we observe improvement in classification results due to
the addition of features extracted from SPADE data, even when the SVM procedure
is run using default parameters. Note, in addition, the consistently lower classifica-
tion accuracies (when compared to other trials in the same block of experiments) on
semantic argument pairs where shared ambiguous cues are present, such as CAUSE

vs. REASON.

Table 4.14. One-vs-One, 9 Features, Manual ABD (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 55.96 66.04 60.98 59.34 70.62
Concession - 68.03 63.23 64.26 71.16
Condition - 60.63 63.33 72.47
Purpose - 61.45 69.00
Reason - 67.20
Result -

Table 4.15. One-vs-One, 9 Features, Manual ABD (Precision/Recall (f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 55.00/59.06 86.42/46.98 58.15/88.59 58.41/88.59 70.62/100.00
(56.96) (60.86) (70.22) (70.40) (81.78)
Concession - 87.64/50.98 59.91/90.85 67.31/68.63 71.16/100.00
(64.46) (72.20) (67.96) (83.16)
Condition - 54.08/91.38 57.78/89.66 70.30/100.00
(67.94) (70.28) (82.56)
Purpose - 63.12/64.49 69.00/100.00
(63.78) (81.66)
Reason - 67.21/99.19
(80.12)
Result -

4.5.2 Grid-Search Parameters
When trained parameters are used, we see one significant drop in classification

accuracy (CAUSE vs. CONCESSION, which still remains above the baseline), but both
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a general trend towards both better classification accuracy and improved consistency

in the balance between precision and recall.

Table 4.16. One-vs-One, 9 Features, Manual ABD, Trained Parameters (Accuracy)

# Cause Concession Condition Purpose Reason Result
Cause - 48.68 65.66 64.11 60.44 70.14
Concession - 70.63 64.95 64.26 71.16
Condition - 61.42 66.67 73.03
Purpose - 60.31 67.00
Reason - 66.67
Result -

Table 4.17: One-vs-One, 9 Features, Manual ABD, Trained Params (Precision/Recall
(f-measure))

# Cause Concession Condition Purpose Reason Result
Cause - 50.27/61.07 81.52/50.34 64.94/67.11 59.28/87.92 70.48/99.34
(55.14) (62.24) (66.00) (70.82) (81.46)
Concession - 88.54/55.56 65.27/71.24 66.88/69.93 71.16/100.00
(68.28) (68.12) (68.38) (83.16)
Condition - 54.69/90.52 60.59/88.79 70.73/100.00
(68.18) (72.02) (82.86)
Purpose - 61.18/67.39 68.94/94.93
(64.14) (79.88)
Reason - 68.24/93.55
(78.92)
Result -

4.6 FEvaluation of Classification Results
In this section we provide a more detailed analysis of the classification results
obtained from the one-vs-one trials using 9 features, manually tagged boundaries, and
grid-search trained parameters C' and 7. This set was selected for examination as it

corresponds to the latest revision of the system.

4.6.1 Cause vs. Concession
CAUSE and CONCESSION are semantically distinct, sharing no cues in the ex-
tractions used here. This holds both in examining these relations from the perspective

of contingency (fine granularity) and from the perspective of RST, where cause forms
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a super ordinating class including result, and concession is grouped with a number of
other relations as CONTRAST.

It appears that the comparatively low performance of the system on this com-
parison may be due to a combination of insufficiently precise syntactic features, and,
more importantly, the fact that the two features derived from the automatic SPADE
tagging may frequently encode information about a different relation that holds be-
tween the text segments in the sentences - a relation that we do not consider in our
analysis. For example, the SPADE features may correctly identify the sentences as
encoding (respectively) the relations CAUSE and CONTRAST, but may also indicate
that both sentences also encode some other relation, such as the TEMPORAL relation,
simultaneously. This is a key point, as it provides some insight into why the system on
occasion underperforms on comparisons of relations that do not appear semantically
close. The learned model may in fact be selecting for some third relation indicated

by the feature data.

4.6.2 Cause vs. Condition

CAUSE and CONDITION share no ambiguous cues in our schema. It should
be noted that in RST, CONTINGENCY is considered to be a semantic subclass of
CONDITION, but that CONTINGENCY in this sense does not refer to the set of semantic
relations that we consider to be unique classes in this set of experiments. Additionally,
the high performance of this comparison may be due to the high frequency of non-
canonical form sentences in the set of extracted CONDITION sentences. For example,
when considering the cues “provided that” and “so long as”, we see a large number of
examples where the form is “So long as ARG1, ARG2” as opposed to the canonical

“ARG2 so long as ARG1”.
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4.6.3 Cause vs. Purpose

The same reasoning as in CAUSE vS. CONDITION applies here. The distri-
bution (and order) of the semantic labels produced by SPADE (in addition to the
other syntactic features) is frequently inverted (due to frequent non-canonical form
sentences in PURPOSE). The relation we call PURPOSE is tagged as ENABLEMENT
by SPADE. These are almost certainly the primary factors contributing to the high

accuracy here.

4.6.4 Cause vs. Reason

Here we see the second lowest accuracy in this row in the accuracy table. Some-
what lower accuracy is expected here due to the shared ambiguous cue ‘because’,
which can also encode relations not considered in this set. This result is somewhat
better than we might expect, given the semantic similarity between these two rela-
tions. (Quirk 1985) note that for sentences tagged by ‘because’ in particular, there is
a subtlety of distinction between cause and reason that can depend on such factors
as the relative authority of the source of the information.

We should therefore look elsewhere to explain this high degree of accuracy. One
probable explanation has to do with the extraction of sentences with the ‘as’ and ‘for’
cues for the relation REASON. These cues are interesting because they can encode
this relation, encode other relations outside of the set considered, or be essentially
semantically empty depending on their use. When we were preparing this corpus, we
noted that in the majority of cases where ‘as’ and ‘for’ encoded reason, they were
preceded by a comma - a mark which in most cases served to emphasize the use
of that cue as a semantic marker. Therefore, a large number of the training and
test examples for the relation REASON have this syntactic form, which may serve to
differentiate the class as a whole given the proportion of syntactic features in our

feature vector.
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4.6.5 Cause vs. Result

These relations do not share any ambiguous cues. The accuracy observed here
would probably be greater if we included more cues for the relation RESULT (some-
thing of an anomaly in our data, as it is cued by only two phrases, ‘so’ and ‘so
that’). Note that in RST, CAUSE and RESULT are both semantic subclasses of the
superordinating relation CAUSE.

We will observe this in all experimental comparisons involving RESULT. Accu-
racies which appear initially to be significantly higher than those seen in other class
comparisons can be directly attributed to the unbalanced data; as a result, those

experiments in which RESULT is involved frequently fail to out-perform the baseline.

4.6.6 Concession vs. Condition

Accuracy (and precision and recall) are all unusually high here. While these
relations are semantically distinct both in our contingency scheme and in RST, this
may be due to some peculiarity of syntactic form in the sentences extracted for the
corpus used here. However, a preliminary examination of the SPADE features ex-
tracted for CONCESSION indicates that SPADE consistently tags those relations we
consider to be CONCESSION as CONTRAST (the superordinating term in RST), so this
may be an example of a pair of relations that exhibits sufficient semantic distance to

make the classification task “easy”.

4.6.7 Concession vs. Purpose

Here we observe relatively high (71.24%) recall of the class CONCESSION in the
classification task with PURPOSE, but somewhat lower precision. This overclassifica-
tion of examples of PURPOSE as CONCESSION is difficult to explain. Even in RST,
these relations occupy semantically remote classes (CONTRAST and ENABLEMENT,

respectively) and share no ambiguous cues. One potential explanation is that in the
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compact corpus used here, the syntactic complexity of the sentences extracted leads
to the simultaneous learning (as described before) of some third, common relation

not considered as part of this set.

4.6.8 Concession vs. Reason

As in the comparison of CONCESSION to PURPOSE, we see adequate recall
paired with somewhat lower precision. Since these classes, again, exhibit no semantic
overlap (when encoded by the cues used here), this speaks to a tendency of the learning
model to classify based on syntactic similarities; that is, the SPADE features do not
adequately address the difference between these two relations, even though they are

separately classed in RST (respectively under CONTRAST and ELABORATION).

4.6.9 Concession vs. Result
As described previously, the lower performance of the system in this case is best
explained by the relatively small number of training and test examples available for

REsuLT. This will be addressed in a future version of the system.

4.6.10 Condition vs. Purpose, Condition vs. Reason, and Condition vs. Result
The system exhibits remarkable accuracy in each of these comparisons. Even
in the comparison to RESULT, the lack of an equivalently sized set of data for the
result cues does not seem to result in misclassifications. It appears that both at the
level of contingency relations, and in RST, where PURPOSE, REASON, and RESULT
are respectively classified under ENABLEMENT, EXPLANATION, and CAUSE, there
is sufficient semantic distance between these classes to make classification relatively
simple. It is not immediately clear why this should be the case. One explanation
may be that the syntactic features extracted for this relation differ consistently from

those in the other classes considered due to the relatively large size of the cue phrases
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selected for CONDITION (such as ‘as long as’, ‘in the event that’, and ‘so long as’).

In turn, this could result in consistent differences in the semantic trees automatically

derived by SPADE.

4.6.11 Purpose vs. Reason

PURPOSE and REASON (respectively superordinated by ENABLEMENT and EX-
PLANATION in RST) share no ambiguous cues. However, a manual examination of
the extracted SPADE feature indicates that the ENABLEMENT relation frequently
appears in the SPADE features extracted for sentences appearing in the REASON
section of the corpus. This is, as noted previously, due to the fact that in the ma-
jority of sentences encountered in the corpus more than one relation is encoded (due
to the length and complexity of the points involved). Semantic separation of these
relations in the classification task will certainly improve as more refined methods for

interpreting the SPADE data are developed.

4.6.12 Purpose vs. Result
Here again we see the “high recall, relatively low precision” phenomenon. As
established previously, this has less to do with the semantic distance between the

relations than with the inadequate size of the RESULT section of the corpus.

4.6.13 Reason vs. Result

Low performance here is most readily explained, again, by the lack of suffi-
cient test and training data (generated from only 4 and 2 cues for each relation,
respectively). In addition, a preliminary examination of the SPADE features in the
REsuLT feature files seems to indicate that the cues used in this experiment, ‘so’ and
‘so that’, rarely if ever trigger the correct superordinating RST semantic tag (CAUSE)

in SPADE. Addressing this will require further work.
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4.6.14 Additional Comments

Providing an adequate account of the semantic structure and distribution of
the set of contingency relations is a complex task. Initially, it was not obvious how to
process the RST data from the trees generated by SPADE to aid in the classification
task. However, we have made some general observations on the process.

First, there is not a direct mapping from the contingency relations as defined in
(Quirk 1985) to those sets of semantic relations defined in RST. Nevertheless, the 16-
class partitioning noted by Marcu in the RST tagging manual provides a good account
of the cases in which these relations can be semantically separated even which shifted
into a classification scheme of coarser granularity. Due to this, it might be useful to
examine only those rel2par values that appear immediately prior to the cue for the
relation we are looking for, either for inclusion as a feature in the system or simply
to provide an account of the consistency of the mapping between our relations and
the superordinating relations in RST.

Second, certain of the cue phrases we utilize will never trigger the appropriate
RST semantic class into which the particular contingency relation we are examining
should fall. This is a major issue, as it means that, effectively, the SPADE features
cannot provide us with a reasonable account of the semantic structures that we are
interested in when using those cues. Future work will include a more detailed analysis
of corpus cue distribution for the contingency relations, in addition to the selection
of multiple cue sets for each relation. Various methodologies have been developed for
the study of discourse cue usage (Moser and Moore 1995), with applications towards

both generative and interpretive systems.

4.7 One-Vs-One Feature Contribution (9 Features, Manual ABD)
In experimental machine learning procedures, it is desirable to extract feature

contribution values in order to determine which features are most salient to the task
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at hand. A formal account of feature contribution would necessitate a prohibitive
amount of experimental trials (that is, a trial for each set in the power set of features
present), as pairs or groups of features may yield patterns of interference. However,
we can still extract useful information about feature contribution by running each
trial from the one-vs-one experiments with each feature removed individually.
Intuitively, we expect that features with unique feature value magnitudes ap-
proaching the size of our full corpus will have a negligible contribution to the accuracy
of the trials, as such features will not aid in the construction of classification rules in
the learned model. The converse, however, does not necessarily hold. That is, features
with relatively few unique feature values in the corpus used here will not necessarily
contribute to higher classification accuracies. The distribution of such feature values
may in fact result from a pattern or series of patterns in the data that are not being
considered here, and consequently may result in a reduction in classification accuracy.
In Table 4.18, the classification accuracies are listed in order of features removed.
For each row element, the topmost value indicates the classification accuracy with
features 2-9 present, the next with features 1 and 3-9 present, and so on. Differentials

between these and the original classification accuracies are given in parentheses.
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Table 4.18: One-vs-One, 9 Features, Manual ABD (Feature Contribution): Difference
measures are given in parentheses.

# Cause  Concession Condition Purpose Reason Result
Cause - 53.97 (-1.99) 66.04 (0.00) 60.28 (-0.70) 60.07 (+0.73)  70.62 (0.00)
55.96 (0.00) 58.49 (-7.55) 56.79 (-4.19) 59.34 (0.00) 70.62 (0.00)
56.62 (+0.71)  66.04 (0.00) 59.93 (-1.05) 57.51 (-1.83) 70.62 (0.00)
55.96 (0.00) 66.04 (0.00) 60.98 (0.00) 58.61 (-0.73) 70.62 (0.00)
55.62 (-0.34) 66.04 (0.00) 63.07 (+2.09) 58.61 (-0.73) 70.62 (0.00)
55.96 (0.00) 66.04 (0.00) 63.07 (+2.09) 59.34 (0.00) 70.62 (0.00)
55.96 (0.00) 66.42 (+0.40) 62.72 (+1.74) 57.88 (-1.46) 70.62 (0.00)
54.97 (-0.99) 66.42 (+0.40) 62.02 (+1.04) 58.24 (-1.10) 70.62 (0.00)
54.30 (-1.66) 66.42 (+0.40) 61.34 (+0.36) 53.85 (-5.49) 70.62 (0.00)
Concession - 67.66 (-0.37) 63.91 (+0.68) 64.62 (+0.36) 71.16 (0.00)
64.31 (-3.72) 61.16 (-2.07) 63.54 (-0.72) 71.16 (0.00)
69.89 (+1.86) 62.88 (-0.35) 63.18 (-1.08) 71.16 (0.00)
68.77 (+0.74)  62.54 (-0.69) 64.26 (0.00) 71.16 (0.00)
69.15 (+0.26)  62.89 (-0.34) 64.62 (+0.36)  71.16 (0.00)
68.77 (+0.74)  63.23 (0.00) 63.89 (-0.34) 71.16 (0.00)
68.77 (+0.74)  63.92 (+0.69) 64.62 (4+0.36) 71.16 (0.00)
68.77 (+0.74)  62.19 (-1.04) 64.26 (0.00) 71.16 (0.00)
69.52 (4+0.63)  58.08 (-5.15) 55.59 (-8.67) 71.16 (0.00)
Condition - 60.23 (-0.40) 64.17 (+0.84)  72.47 (0.00)
60.63 (0.00) 60.83 (-2.50) 72.47 (0.00)
61.81 (+1.18) 64.58 (+1.25)  70.78 (-1.69)
61.47 (+0.84) 63.33 (0.00) 71.35 (-1.12)
61.81 (+1.18) 63.75 (+0.42) 71.91 (-0.56)
61.42 (+0.79)  63.75 (+0.42) 71.91 (-0.56)
62.20 (+1.57) 64.58 (+1.25)  73.59 (+1.12)
60.63 (0.00) 63.33 (0.00) 72.47 (0.00)
60.63 (0.00) 63.75 (+0.42)  72.47 (0.00)
Purpose - 61.07 (-0.38) 69.00 (0.00)
56.87 (-4.58) 69.00 (0.00)
60.69 (-0.76) 69.00 (0.00)
60.31 (-1.14) 69.00 (0.00)
60.69 (-0.76) 69.00 (0.00)
61.45 (0.00) 69.00 (0.00)
61.07 (-0.38) 69.00 (0.00)
61.07 (-0.38) 69.00 (0.00)
61.07 (-0.38) 69.00 (0.00)
Reason - 67.20 (0.00)
66.67 (-0.53)
67.20 (0.00)
67.20 (0.00)
67.20 (0.00)
67.20 (0.00)
67.20 (0.00)
67.20 (0.00)
67.20 (0.00)

Result
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4.8 One-Vs-All (7 Features, Automatic Argument Boundaries)

In addition to the one-vs-one experimental series discussed in the previous sec-
tion, the system was modified to produce test and training data for classification
trials involving selection of a single semantic relation within non-homogeneous set
comprising all remaining relations.

The majority of SVM implementations currently available treat multi-class
problems as a series of pairwise comparisons. For the one-vs-all series of experiments
presented here, the data was reformulated so that examples from the desired class
appeared with the original label and all other class examples were grouped together
under a single label.

Additionally, early trials confirmed that while the SVM procedure is relatively
immune to discrepancies in the magnitudes of the data available for different classes,
the system would become overtrained on the non-class data (comprised of all remain-
ing classes), resulting in almost no “true positives” in the trial results, if all examples
of the test and training data were used for those classes. Consequently, the size of this
data set was attenuated to match that of the desired class, resulting in more uniform
results. This does not conform to a distribution we might expect to see in open text,
but represents an acceptable compromise while we seek to improve the system. As in

previous trials, all baselines for the following results are centered around 50%.

4.8.1 Detault Parameters

Using default parameters, classification accuracy is highest relative to the base-
line for CONCESSION (remembering that the relatively small number of training and
test examples available for RESULT leads to high accuracies that are discounted when
we observe that recall is almost nonexistent). Lower classification accuracies for
CAUSE and PURPOSE reflect the presence of overtly ambiguous cues, or cues sharing

syntactic similarity with those from other classes.



64

Table 4.19. One-vs-All, 7 Features, Automatic ABD (Accuracy)

Cause Concession Condition Purpose Reason Result
57.51 65.34 63.87 57.09 58.97 69.42

Table 4.20. One-vs-All, 7 Features, Automatic ABD (Precision/Recall (f-measure))

Cause Concession Condition Purpose Reason Result
59.54/69.13 65.08/80.39 62.09/66.38 62.75/46.38 65.91/46.77 33.33/1.61
(63.98) (71.92) (64.16) (53.34) (54.72) (3.08)

Recall for PURPOSE and REASON appears significantly lower than for the pre-
ceding three classes. Both of these classes share cues (in the former, so that with
RESULT and in the latter, because with CAUSE) with other relations, so in addition
to narrower semantic distance between these and other relations in the CONTIN-
GENCY set, we can expect similarity of syntactic patterns across these classes to be

a factor here as well.

4.8.2 Grid-Search Parameters

As in the one-vs-one trials with automatic boundary detection, we see a signif-
icant improvement in classification accuracy when using trained parameters C' and
v. A significant departure is the accuracy for the class REASON, which decreases
slightly. One difficulty we have in evaluating these trends is in determining what is
and what is not statistically significant, due to the complexity of a feature extraction
process which uses a variety of tools that may not perform at published error rates
on a corpus of extremely limited size. We must therefore exercise care in separating

anomalous cases from semantically interesting ones.

Table 4.21: One-vs-All, 7 Features, Automatic ABD, Trained Parameters (Accuracy)

Cause Concession Condition Purpose Reason Result
66.30 67.15 74.79 60.92 57.69 69.42
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Table 4.22: One-vs-All, 7 Features, Auto. ABD, Trained Params (Precision/Recall
(f-measure))

Cause Concession Condition Purpose Reason Result
68.87/69.79 68.02/76.47 72.58/77.59 65.52/55.07 59.84/61.29 33.33/30.65
(69.32) (71.98) (75.00) (59.84) (60.56) (31.94)

Note that recall for PURPOSE and REASON remain low (trailing by roughly
20% as compared to the three preceding classes), and that while the overall accuracy
for the class REASON drops, recall improves dramatically over the default parameter

trial.

4.9 One-Vs-All (9 Features, Automatic Argument Boundaries)

When adding the semantic features extracted from the SPADE discourse struc-
tures, we observe a small increase in classification accuracy for the classes CONCES-
s1ON and CONDITION, and slight decreases for the remaining classes (again discount-
ing the figures for RESULT). The trend here mirrors that of the one-vs-one trials
when using automatic argument boundaries. That is, a strong indication of interfer-
ence between distributional patterns introduced by the heuristic and those patterns

inferred by the SPADE semantic tags.

4.9.1 Default Parameters

Table 4.23. One-vs-All, 9 Features, Automatic ABD (Accuracy)

Cause Concession Condition Purpose Reason Result
57.88 66.07 65.13 56.32 55.13 69.90

Table 4.24. One-vs-All, 9 Features, Automatic ABD (Precision/Recall (f-measure))

Cause Concession Condition Purpose Reason Result
61.49/61.07 66.67/77.12 64.86/62.07 63.04/42.03 63.77/35.48 0.00/0.00
(61.28) (71.52) (63.44) (50.42) (45.58) (0.00)
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As in the trials lacking SPADE data, we observe a dramatic drop in recall
for PURPOSE and REASON. However, we would not expect adding SPADE data,
which tags relations at a much coarser semantic level, to improve this. Indeed, CON-
TENGENCY relations with lower semantic distance from other classes are more likely

to be subsumed by a superordinating relation in the RST subset used by SPADE.

4.9.2 Grid-Search Parameters

As in previous trials, tuned parameters lead to higher classification accuracies
for most classes. This time (again discounting RESULT) there is a decrease in accuracy
for CONCESSION, providing some further incidental support for the idea that such
results are a consequence of the limited size of the test data being used, and not a

manifestation of some inherent feature associated with the semantic argument.

Table 4.25: One-vs-All, 9 Features, Automatic ABD, Trained Parameters (Accuracy)

Cause Concession Condition Purpose Reason Result
62.27 63.54 69.75 57.47 58.12 66.02

Table 4.26: One-vs-All, 9 Features, Auto. ABD, Trained Params (Precision/Recall
(f-measure))

Cause Concession Condition Purpose Reason Result
64.95/67.11 66.05/69.93 66.92/75.00 63.11/47.10 59.84/61.29 40.91/29.03
(66.02) (67.94) (70.72) (53.94) (60.56) (33.96)

Here again we see that the cross-validated parameter training procedure favors
balance of precision and recall over accuracy, noting a similar increase in the class
REASON as in the previous experiments. The continued inability of the classification
procedure to select a majority of the test examples associated with PURPOSE (for
which recall has been below or near 50% in all experiments) suggests poor separa-
bility resulting from either an imbalance in the syntactic patterns of the test data

(unlikely, due to the randomized shuffle of the original corpus prior to the train/test
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split) or (more reasonably) the lowest semantic distance between this and the other

CONTINGENCY classes when labeled with SPADE discourse parses.

4.10 One-Vs-All (7 Features, Manual Argument Boundaries)
We continue to observe parallels with the one-vs-one trials when examining
the one-vs-all trials using the “gold standard” manual argument boundaries. Again,
accuracies are noticeably lower than those associated with the trials using features

generated using the automatic heuristic, but remaining above the baseline.

4.10.1 Default Parameters

Table 4.27. One-vs-All, 7 Features, Manual ABD (Accuracy)

Cause Concession Condition Purpose Reason Result
52.75 55.59 63.45 53.26 50.85 70.39

Table 4.28. One-vs-All, 7 Features, Manual ABD (Precision/Recall (f-measure))

Cause Concession Condition Purpose Reason Result
55.10/78.48 56.94/80.39 57.84/92.24 64.29/26.09 56.00/33.87 100.00/1.16
(64.74) (66.66) (71.55) (37.12) (42.22) (2.30)

To understand why these results appear to underperform their automatic ABD
counterparts, we must examine the associated precision/recall data in more detail.
As before, we see a distinct pattern, in which recall is much higher for the classes
CAUSE, CONCESSION, and CONDITION than for PURPOSE and RESULT, which have
correspondingly fallen. We notice an interesting phenomenon: for those classes with
few or no ambiguous cues (and, presumably, the largest semantic distance from other
classes), recall approaches near-human levels, indicating a closer grouping of the ex-
amples in the feature space. However, as this grouping is still non-separable from

all other class data existing in that space, precision drops accordingly as non-class
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examples are misclassified.

For those remaining classes exhibiting higher semantic and syntactic ambigu-
ity, recall drops noticeably, while precision remains relatively high; this speaks to a
classifier which selects a relatively small subset of data in test set, those which ap-
pear unambiguously defined, while remaining examples remain indistinguishable from

other classes.

4.10.2 Grid-Search Parameters

Tuned parameters appear to have a negligible effect on this series of trials, with
classification accuracies effectively remaining the same. Precision and recall for the
highly ambiguous classes remain low, in contrast to previous experiments where recall

was boosted significantly in many cases by the tuning process.

Table 4.29. One-vs-All, 7 Features, Manual ABD, Trained Parameters (Accuracy)

Cause Concession Condition Purpose Reason Result
52.01 55.23 63.03 54.02 51.71 69.90

Table 4.30: One-vs-All, 7 Features, Manual ABD, Trained Params (Precision/Recall
(f-measure))

Cause Concession Condition Purpose Reason Result
54.95/67.11 57.36/73.86 57.87/88.79 58.65/44.20 58.21/31.45 50.00/9.68
(60.42) (64.58) (70.08) (50.40) (40.84) (16.22)

4.11 One-Vs-All (9 Features, Manual Argument Boundaries)

The following results represent classification trials conducted using the latest
version of the feature extraction system. Initially, we had assumed that the use
of lexico-syntactic and semantic features along with manually detected argument
boundaries would yield the highest classification accuracies. As can be seen below,

this is not the case. However, as noted in the one-vs-one trials, the reason for this
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may not be trivial. While the automatically detected argument boundaries lead to
higher classification accuracies using the corpus we developed, this performance may
be a consequence of patterns introduced by the heuristic itself, patterns that may not

hold in other corpora, or more generally in open text.

4.11.1 Default Parameters

Table 4.31. One-vs-All, 9 Features, Manual ABD (Accuracy)

Cause Concession Condition Purpose Reason Result
52.38 59.21 62.61 53.26 53.42 69.42

Table 4.32. One-vs-All, 9 Features, Manual ABD (Precision/Recall (f-measure))

Cause Concession Condition Purpose Reason Result
55.62/63.09 60.99/72.55 57.22/92.24 57.27/45.65 61.19/33.06 0/0
(59.12) (66.26) (70.62) (50.80) (42.92) (N/A)

4.11.2 Grid-Search Parameters

While the accuracy of a particular classification may not change significantly
between the default parameter trial and the tuned parameter trial, the actual classi-
fication results can vary significantly, as evidenced by the often substantial shifts in

precision and recall.

Table 4.33. One-vs-All, 9 Features, Manual ABD, Trained Parameters (Accuracy)

Cause Concession Condition Purpose Reason Result
54.21 56.32 63.03 54.41 54.27 69.90

Such examination can help guide future trials, as preliminary evidence can be
misleading, particularly when dealing with multi-class data; for example, note the

high classification accuracy for RESULT in the previous trial, in spite of the fact
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Table 4.34: One-vs-All, 9 Features, Manual ABD, Trained Parameters (Preci-
sion/Recall (f-measure))

Cause Concession Condition Purpose Reason Result
57.14/64.43 58.16/74.51 57.69/90.52 56.74/57.97 61.97/35.48 50.00/6.45
(60.56) (65.32) (70.46) (57.34) (45.12) (11.42)

that no “true positives” were selected. Grid-search parameter selection improves this

result (albeit marginally).

4.12 Discussion

In the preceding experiments, we see a number of interesting phenomena related
both to the lexico-syntactic and semantic feature set selected for the SVM trials, and
to the argument boundary selection procedures that provide a basis for the extracted
feature values.

The results obtained from the trials conducted using features extracted with the
automatic boundary detection heuristic are not conclusive, even though they demon-
strate consistently higher accuracies than those obtained with the manual argument
boundaries. Examination of the corpus and the extracted features themselves, which
contain numerous instances of missing or incorrectly intepreted features, suggest that
this somewhat naive approach cannot provide a legitimate account of the semantic
spaces occupied by the contingency relations, but rather imposes patterns derived
from its own encoding on the data.

An examination of the trials in which manual argument boundaries were used
indicates that the introduction of “gold standard” arguments eliminates this flaw.
However, it also serves to further illustrate the difficulty of classifying these relations.
Trials using manual ABD consistently result in classification accuracies marginally
above the associated baseline. This is a consequence both of the lack of adequate

semantic features in the feature vector and the limited size of the training corpus. As
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per the results given in Table 4.18, it appears the provided features which encode the
full discourse structure associated with a sentence may be too broad an approach;
the discourse structures themselves can vary significantly based on the inclusion of
arguments not relevant to our task, such as attributions, even when the syntactic and
semantic organization related to the contingency are similar or identical.

Classification trials involve a balance of precision and recall depending on the
desired output (for example, to what degree we are willing to tolerate false positives).
As the default parameter trials using automatic ABD show, relatively high accuracies
can be achieved when we build classifiers using feature data that depends directly on
syntactic patterns (as the automatic ABD heuristic has no method for ensuring that
the verb phrases located indeed correspond to the actual semantic arguments and
argument order). When we introduce manually tagged argument boundaries, clas-
sification accuracies seem to better reflect our understanding of the semantic spaces
occupied by the arguments.

The contingency relations are highly ambiguous, with the interpretation of some
adverbial cues depending largely on our perception of the situation being described
in a particular passage. In the immediate context of an isolated pair of phrases, we
may in some cases assign one interpretation (and, subsequently, relation) that is not
borne out in the remaining discourse. When the semantics of a particular argument
are unambiguous, and when the associated syntactic patterns correspond to a direct
realization of those arguments, classical syntactic approaches may suffice. However,
as we move into more finely grained classes, and semantic and syntactic boundaries
become blurred (due, in the former, to overlap in the associated semantic spaces, and
in the latter, to overlap in cue phrases), we must look to more sophisticated methods
for generating and processing hierarchical semantic constructs within the discourse
(in addition to the associated syntactic realizations) to perform class selection.

For now, such an examination is limited by the availability of large, appropri-
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ately tagged corpora, and by the relative dearth of tools for the creation of semantic
parses. However, as these tools become available, and as learning procedures are
expanded to include steps such as generalized argument boundary detection (giving
us the ability to construct large corpora of paired arguments across unlimited text
spans), we will have the facilities to build more complete classification tools relying

less on purely syntactic processing and more on shallow semantic features.



CHAPTER FIVE

Conclusion

5.1 Overview

In this thesis we describe a unique approach to the task of classifying a finely
grained and highly ambiguous set of discourse relations, the contingency relations.
This investigation demonstrates that providing an adequate account of semantic struc-
ture and distribution of the set of contingency relations for application in a supervised
machine learning environment is a feasible but complex task. Even when examining
the contingency relations in a context limited to one or two sentences drawn from a
given discourse where each relation is explicitly cued, achieving acceptable levels of
classification can be difficult. The lexico-syntactic and semantic features developed
and applied here represent an initial step toward adequately addressing the semantic
spaces occupied by these relations.

Learning procedures in general (applied to tasks not related to semantic or other
forms of text processing) typically utilize a large number of features, both manually
selected and automatically generated, to enhance classification accuracy. Frequently,
such features are generated algorithmically or based on an expected statistical distri-
bution of certain lexical factors in the text. In these experiments, a detailed account
of the reasoning for the inclusion of each feature is provided, in addition to a prelim-
inary exploration of feature contribution. Second, learning procedures — even those
utilizing Support Vectors — are typically trained and tested on massive corpora to
avoid problems due to irregularities in distribution and matching patterns that can
lead to overfitting of the learned model. We have shown that SVM models trained on
carefully annotated data drawn from a compact corpus and tuned via cross-validation

consistently out-perform the baseline on the highly ambiguous set of relations used.

73
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The variability in the results obtained is not unexpected, as the current sys-

tem remains relatively semantically shallow and operates on an extremely limited
corpus. Additionally, the creation of large corpora where manual annotations (such
as those for argument boundaries) are needed can require prohibitive amounts of
time to create. As the corpus was selected to represent a wide variety of syntactic
forms (including but not limited to canonical and non-canonical structures, intra-
and inter-sentential argument structures), argument structures (including represen-
tative example of lexically separate arguments, arguments with lexical overlap, and
argument inclusion), and a broad range of cue phrases expected to typically appear
with high frequency in open text, we expect that the performance of this system will
generalize to other corpora, in certain cases improving due to better distributions of

arguments underrepresented in these experiments.

5.2  Future Work

Future work will include applications of Support Vector learning to argument
boundary detection and more intelligent methods for adjoining syntactic trees. More-
over, we intend to expand the feature set with semantic and pragmatic knowledge to
capture intentions, beliefs, and contextual information such as discourse relations in
a large context window surrounding the target instance. The intuition behind this
idea is that some discourse relations may depend on previously occurring relations in
discourse.

Argument boundary detection proved a significant obstacle in the research pre-
sented here. Ideally, we desire a system where trained models for argument boundary
detection could be applied to domain specific corpora without significant loss of accu-
racy. In the current model, we are limited to a boundary detection procedure which
relies on heuristics (a non-adaptive and semantically empty approach), or one which

depends on massive expenditures of time on the part of human annotators to tag the
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corpus being used. The use of machine learning procedures would provide a good bal-
ance of accuracy and efficiency. A suitably general training corpus, once annotated
with argument boundaries for the purpose of constructing a trained model, would
allow us to quickly and efficiently run the ABD procedure on any available corpus
with near-human levels of accuracy. A corpus manually annotated with discourse
structures (such as RST-DT) would further enhance the procedure, as we could use
manually verified text spans corresponding to satellites of a relation to provide further
support to the procedure.

Experiments suggest that when attempting semantic argument classification in
open text, a small number of carefully selected features can be sufficient for many
types of data (Joachims 1999). In practice, such feature selection can be very difficult,
as novel features frequently require adjustments to the available data representation
and increase the size of the battery of tests required to appropriately measure feature
contribution.

The features described and used in this thesis were developed partly based on
prior experimental work in the extraction of syntactic features from automatically
annotated trees and the associations between syntactic realizations and underlying
semantic arguments (Gildea and Jurafsky 2002). Additional elements of the feature
vector were developed by examining patterns present within and across parallel anno-
tations of the available corpus with parts of speech, grammatical roles, and discourse
structures. However, choosing “good” feature sets can require many iterations and ex-
tensive examination of the available data, both for developing heuristics to aid feature
selection in the future, and for providing appropriate justifications for the present fea-
tures. The current system, having undergone four major feature (or feature-related)
revisions (respectively, for feature representation format, argument subtree traversal,
addition of semantic features 8 and 9, and replacement of the automatic argument

boundary detection procedure), requires further examination and modification.
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Examination of the feature magnitude values indicates that in their present
form, a number of the features (in particular, features 4-7) extract values that appear
to be too specific to yield useful patterns for developing learned rules. Feature 7
(the in-order traversal of grammatical roles) could be updated to provide a more
specific account of the ordering of particular roles, for example passive and active
verb phrases. Feature 6 will most likely be removed in future revisions of the system,
as even in large corpora there is a relative dearth of sentence repetition, which is
all this feature appears to capture. Features 4 and 5 (respectively, the subordinate
and main argument in-order traversals) could each be separated into two features, one
representing the path from the sentence head to the feature head, and one representing
the traversal of the lone argument. Furthermore, these features would benefit from a
generalization procedure that would take constructs such as noun compounds, tailing
noun phrases, and in certain cases adjectival phrases, and aggregating these into
single tag representations for insertion into the feature. This would have the effect of
reducing the number of unique feature values without eliminating relevant parts of
the syntactic realization with respect to the associated semantic class.

A major aspect of this research was the construction of the corpus. Eugene
Charniak notes that the creation of a corpus for test purposes of a specific system can
be a prohibitive task, one which researchers will avoid both due to time constraints
and the lack of a comparative measure with existing systems (Charniak 1997). We
came to appreciate this several months into the creation of the corpus used here.
Even with the aid of Perl scripts for cue pattern matching, the location of relevant
examples encoding the requisite semantic arguments and subsequent manual tagging
of argument boundaries was a laborious and time-intensive task. A benefit of this
approach was that the resulting data set remained virtually noise-free.

In the future, we intend to train and test the system on the RST-DT corpus

used for a variety of other projects, including that which motivated the development
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of SPADE (Carlson et al. 2003). Benefits of using such a corpus include the use of
discourse structures manually annotated by multiple sources, along with a measure
of inter-annotator agreement. Such a corpus allows for more consistent methods
of argument boundary detection, expansion of the classification procedure to other
semantic classes, and provides for performance measurements that can be directly

compared to similar semantic classification tools.

5.3 Summary
This work represents a preliminary examination of the semantic spaces occupied
by the contingency relations, a set of relations previously unexplored in the literature.
It provides a novel approach to the problem of classifying these relations, and has a
strong theoretical basis in previous work on syntactic and semantic feature extraction.
Future applications of research in computational semantics, including tasks such as
Question Answering and Text Summarization, will depend directly on the availability

of such accounts.



APPENDIX

78



A.l

APPENDIX A

Full Experimental Trial Data

One-Vs-One, 7 Features, Automatic ABD

Cause vs. Concession

Default Parameters

Trained Parameters c1,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

58.6093% (177/302)
0.413907

0.0294865

tp=83 fp=59 fn=66 tn=94
0.584507042253521
0.557046979865772

59.6026% (180/302)
0.403974

0.0367195

tp=83 fp=56 fn=66 tn=97
0.597122302158273
0.557046979865772

Cause vs. Condition

Default Parameters

Trained Parameters ¢32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

78.4906% (208/265)
0.860377

0.32623

tp=114 fp=22 fn=35 tn=94
0.838235294117647
0.76510067114094

84.1509% (223/265)
0.633962

0.459719

tp=128 fp=21 fn=21 tn=95
0.859060402684564
0.859060402684564

Cause vs. Purpose

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

60.9756% (175/287)

3.5122

0.0510922

tp=122 fp=85 fn=27 tn=>53
0.589371980676328
0.818791946308725

70.3833% (202/287)
2.66551

0.165037

tp=109 fp=45 fn=40 tn=93
0.707792207792208
0.731543624161074

Cause vs. Reason

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

54.5788% (149/273)
7.2674

0.000321556

tp=144 fp=119 fn=>5 tn=5
0.547528517110266
0.966442953020134

58.6081% (160/273)
6.62271

0.0224194

tp=111 fp=75 fn=38 tn=49
0.596774193548387
0.74496644295302

Cause vs. Result

Default Parameters

Trained Parameters c32,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

70.6161% (149/211)
7.34597

nan

tp=149 fp=62 fn=0 tn=0
0.706161137440758

1

73.4597% (155/211)
6.63507

0.0723812

tp=138 fp=45 fn=11 tn=17
0.754098360655738
0.926174496644295

79
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Concession vs. Condition

Default Parameters

Trained Parameters ¢32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

83.2714% (224/269)
0.167286

0.442364

tp=125 fp=17 fn=28 tn=99
0.880281690140845
0.816993464052288

88.4758% (238/269)
0.115242

0.585743

tp=137 fp=15 fn=16 tn=101
0.901315789473684
0.895424836601307

Concession vs. Purpose

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.323% (193/291)

1.34708

0.115645

tp=133 fp=78 fn=20 tn=60
0.630331753554502
0.869281045751634

68.3849% (199/291)

1.2646

0.134727

tp=105 fp=44 fn=48 tn=94
0.704697986577181
0.686274509803922

Concession vs. Reason

Default Parameters

Trained Parameters c4,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

59.5668% (165/277)
3.63899

0.0452779

tp=151 fp=110 fn=2 tn=14
0.578544061302682
0.986928104575163

60.2888% (167/277)

3.57401

0.0377337

tp=143 fp=100 fn=10 tn=24
0.588477366255144
0.934640522875817

Concession vs. Result

Default Parameters

Trained Parameters c32,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

71.6279% (154/215)
4.53953

0.00986823

tp=152 fp=60 fn=1 tn=2
0.716981132075472
0.993464052287582

76.7442% (165/215)
3.72093

0.130313

tp=148 fp=45 fn=>5 tn=17
0.766839378238342
0.967320261437909

Condition vs. Purpose

Default Parameters

Trained Parameters c8,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

83.0709% (211/254)
0.169291

0.433412

tp=93 fp=20 fn=23 tn=118
0.823008849557522
0.801724137931034

84.6457% (215/254)
0.153543

0.477241

tp=97 fp=20 fn=19 tn=118
0.829059829059829
0.836206896551724

Condition vs. Reason

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

74.1667% (178/240)
1.03333

0.250382

tp=99 fp=45 fn=17 tn="79
0.6875

0.853448275862069

88.75% (213/240)

0.45

0.601766

tp=105 fp=16 fn=11 tn=108
0.867768595041322
0.905172413793103

Condition vs. Result

Default Parameters

Trained Parameters c8,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

70.7865% (126/178)
2.62921

0.0973682

tp=114 fp=>50 fn=2 tn=12
0.695121951219512
0.982758620689655

79.7753% (142/178)
1.82022

0.289218

tp=107 fp=27 fn=9 tn=35
0.798507462686567
0.922413793103448
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Purpose vs. Reason

Default Parameters

Trained Parameters ¢32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

60.3053% (158/262)
0.396947

0.0403059

tp=92 fp=>58 fn=46 tn=66
0.613333333333333
0.666666666666667

64.1221% (168/262)
0.358779

0.0776628

tp=105 fp=61 fn=33 tn=63
0.632530120481928
0.760869565217391

Purpose vs. Result

Default Parameters

Trained Parameters ¢16,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69% (138/200)

1.24

nan

tp=138 fp=62 fn=0 tn=0
0.69

1

70.5% (141/200)

1.18

0.0417418

tp=127 fp=48 fn=11 tn=14
0.725714285714286
0.920289855072464

Reason vs. Result

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.6667% (124/186)
0.333333

nan

tp=124 fp=62 fn=0 tn=0
0.666666666666667

1

62.9032% (117/186)
0.370968

0.0262295

tp=90 fp=35 fm=34 tn=27
0.72

0.725806451612903

A.2 One-Vs-One, 7 Features, Manual ABD

Cause vs. Concession

Default Parameters

Trained Params ¢32,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

55.298% (167/302)
0.44702

0.0111237

tp=79 fp=65 fn=70 tn=88
0.548611111111111
0.530201342281879

53.6424% (162/302)
0.463576

0.0053932

tp=83 fp=74 fn=66 tn="79
0.528662420382166
0.557046979865772

Cause vs. Condition

Default Parameters

Trained Parameters c16,gl

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

65.6604% (174/265)
1.37358

0.150988

tp=71 fp=13 fn=78 tn=103
0.845238095238095
0.476510067114094

66.4151% (176/265)

1.3434

0.150388

tp=76 fp=16 fn=73 tn=100
0.826086956521739
0.51006711409396

Cause vs. Purpose

Default Parameters

Trained Parameters c16,g1

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

58.885% (169/287)

3.70035

0.0396403

tp=133 fp=102 fn=16 tn=36
0.565957446808511
0.89261744966443

58.1882% (167/287)
3.76307

0.0254094

tp=101 fp=72 fn=48 tn=66
0.583815028901734
0.677852348993289
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Cause vs. Reason

Default Parameters

Trained Parameters ¢32,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

54.9451% (150/273)
7.20879

0.00145851

tp=146 fp=120 fn=3 tn=4
0.548872180451128
0.979865771812081

54.2125% (148/273)
7.32601

0.00212844

tp=113 fp=89 fn=36 tn=35
0.559405940594059
0.758389261744966

Cause vs. Result

Default Parameters

Trained Parameters c8,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

70.6161% (149/211)
7.34597

nan

tp=149 fp=62 fn=0 tn=0
0.706161137440758

1

69.1943% (146/211)
7.70142

0.00600155

tp=146 fp=62 fn=3 tn=0
0.701923076923077
0.979865771812081

Concession vs. Condition

Default Parameters

Trained Parameters c8,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69.8885% (188/269)
0.301115

0.212161

tp=84 fp=12 fn=69 tn=104
0.875

0.549019607843137

69.5167% (187/269)
0.304833

0.183333

tp=90 fp=19 fn=63 tn=97
0.825688073394495
0.588235294117647

Concession vs. Purpose

Default Parameters

Trained Parameters ¢8,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

56.0137% (163/291)

1.75945

0.0141882

tp=137 fp=112 fn=16 tn=26
0.550200803212851
0.895424836601307

61.1684% (178/291)
1.55326

0.0475676

tp=114 fp=74 fn=39 tn=64
0.606382978723404
0.745098039215686

Concession vs. Reason

Default Parameters

Trained Params ¢32,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

55.2347% (153/277)
4.02888

0.00606731

tp=104 fp=75 fn=49 tn=49
0.581005586592179
0.679738562091503

56.3177% (156/277)
3.93141

0.00896768

tp=111 fp=79 fn=42 tn=45
0.58421052631579
0.725490196078431

Concession vs. Result

Default Parameters

Trained Parameters c16,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

71.1628% (153/215)
4.61395

nan

tp=153 fp=62 fn=0 tn=0
0.711627906976744

1

71.1628% (153/215)
4.61395

0.0084345

tp=149 fp=>58 fn=4 tn=4
0.719806763285024
0.973856209150327
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Condition vs. Purpose

Default Parameters

Trained Parameters c1,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

60.6299% (154/254)
0.393701

0.0963812

tp=106 fp=90 fn=10 tn=48
0.540816326530612
0.913793103448276

60.2362% (153/254)
0.397638

0.0890607

tp=105 fp=90 fn=11 tn=48
0.538461538461538
0.905172413793103

Condition vs. Reason

Default Parameters

Trained Parameters c2,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

64.1667% (154/240)
1.43333

0.114333

tp=103 fp=73 fn=13 tn=>51
0.585227272727273
0.887931034482759

67.5% (162/240)

1.3

0.160412

tp=104 fp=66 fn=12 tn=58
0.611764705882353
0.896551724137931

Condition vs. Result

Default Parameters

Trained Params c0.5,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

72.4719% (129/178)
2.47753

0.14741

tp=116 fp=49 fn=0 tn=13
0.703030303030303

72.4719% (129/178)
2.47753

0.14741

tp=116 fp=49 fn=0 tn=13
0.703030303030303

Recall

1

1

Purpose vs. Reason

Default Parameters

Trained Parameters ¢16,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

59.542% (156/262)
0.40458

0.0350741

tp=87 fp=>55 fn=>51 tn=69
0.612676056338028
0.630434782608696

64.5038% (169/262)
0.354962

0.0816077

tp=98 fp=>53 fm=40 tn=71
0.649006622516556
0.710144927536232

Purpose vs. Result

Default Parameters

Trained Parameters c32,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69% (138/200)

1.24

nan

tp=138 fp=62 fn=0 tn=0
0.69

1

68% (136/200)

1.28

7.87213e-05

tp=134 fp=60 fn=4 tn=2
0.690721649484536
0.971014492753623

Reason vs. Result

Default Parameters

Trained Parameters c8,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.120% (123/186)
0.33871

0.000552486

tp=121 fp=60 fn=3 tn=2
0.668508287292818
0.975806451612903

67.7419% (126/186)
0.322581

0.0181818

tp=120 fp=>56 fn=4 tn=6
0.681818181818182
0.967741935483871
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A.3 One-Vs-One, 9 Features, Automatic ABD

Cause vs. Concession

Default Parameters

Trained Params c0.5,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

57.2848% (173/302)
0.427152

0.0243457

tp=52 fp=32 fn=97 tn=121
0.619047619047619
0.348993288590604

56.9536% (172/302)
0.430464

0.0228147

tp=49 fp=30 fn=100 tn=123
0.620253164556962
0.328859060402685

Cause vs. Condition

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69.8113% (185/265)
1.20755

0.148678

tp=110 fp=41 fn=39 tn=75
0.728476821192053
0.738255033557047

71.3208% (189/265)
1.14717

0.169141

tp=120 fp=47 fn=29 tn=69
0.718562874251497
0.805369127516778

Cause vs. Purpose

Default Parameters

Trained Parameters c16,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

63.4146% (182/287)
3.29268

0.0713032

tp=97 fp=53 fn=>52 tn=85
0.646666666666667
0.651006711409396

70.7317% (203/287)
2.63415

0.175451

tp=99 fp=34 fn=>50 tn=104
0.744360902255639
0.664429530201342

Cause vs. Reason

Default Parameters

Trained Parameters ¢32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

59.707% (163/273)

6.44689

0.0325332

tp=134 fp=95 fn=15 tn=29
0.585152838427948
0.899328859060403

61.5385% (168/273)
6.15385

0.0453936

tp=114 fp=70 fn=35 tn=>54
0.619565217391304
0.76510067114094

Cause vs. Result

Default Parameters

Trained Parameters c4,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

70.6161% (149/211)
7.34597

nan

tp=149 fp=62 fn=0 tn=0
0.706161137440758

68.7204% (145/211)
7.81991

0.000365006

tp=143 fp=60 fn=6 tn=2
0

Recall

1

0

Concession vs. Condition

Default Parameters

Trained Parameters c32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

73.9777% (199/269)
0.260223

0.215353

tp=126 fp=43 fn=27 tn="73
0.745562130177515
0.823529411764706

76.9517% (207/269)
0.230483

0.297885

tp=112 fp=21 fn=41 tn=95
0.842105263157895
0.73202614379085
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Concession vs. Purpose

Default Parameters

Trained Parameters ¢32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

64.2612% (187/291)
1.42955

0.0808441

tp=121 fp=72 fn=32 tn=66
0.626943005181347
0.790849673202614

67.6976% (197/291)

1.2921

0.124809

tp=104 fp=45 fn=49 tn=93
0.697986577181208
0.679738562091503

Concession vs. Reason

Default Parameters

Trained Parameters c16,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

63.1769% (175/277)
3.31408

0.0593969

tp=126 fp=75 fn=27 tn=49
0.626865671641791
0.823529411764706

63.1769% (175/277)
3.31408

0.0594393

tp=118 fp=67 fn=35 tn=>57
0.637837837837838
0.77124183006536

Concession vs. Result

Default Parameters

Trained Parameters ¢16,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

71.6279% (154/215)
4.53953

0.0115315

tp=153 fp=61 fn=0 tn=1
0.714953271028037

1

71.6279% (154/215)
4.53953

0.0513436

tp=135 fp=43 fn=18 tn=19
0.758426966292135
0.882352941176471

Condition vs. Purpose

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

62.5984% (159/254)
0.374016

0.0574311

tp=60 fp=39 fm=56 tn=99
0.606060606060606
0.517241379310345

76.378% (194/254)

0.23622

0.273467

tp=84 fp=28 fn=32 tn=110
0.75

0.724137931034483

Condition vs. Reason

Default Parameters

Trained Parameters c32,g1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

70.4167% (169/240)
1.18333

0.173049

tp=90 fp=45 fn=26 tn=79
0.666666666666667
0.775862068965517

78.3333% (188/240)
0.866667

0.320927

tp=91 fp=27 fn=25 tn=97
0.771186440677966
0.78448275862069

Condition vs. Result

Default Parameters

Trained Parameters c16,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.2921% (118/178)
3.03371

0.0199607

tp=109 fp=>53 fn=7 tn=9
0.672839506172839
0.939655172413793

70.7865% (126/178)
2.62921

0.11448

tp=94 fp=30 fn=22 tn=32
0.758064516129032
0.810344827586207

Purpose vs. Reason

Default Parameters

Trained Params ¢32,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

63.7405% (167/262)
0.362595

0.0730728

tp=103 fp=60 fn=35 tn=64
0.631901840490798
0.746376811594203

67.1756% (176/262)
0.328244

0.116085

tp=97 fp=45 fn=41 tn=79
0.683098591549296
0.702898550724638
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Purpose vs. Result

Default Parameters

Trained Parameters ¢32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69% (138/200)

1.24

nan

tp=138 fp=62 fn=0 tn=0
0.69

1

70.5% (141/200)

1.18

0.0463267

tp=125 fp=46 fn=13 tn=16
0.730994152046784
0.905797101449275

Reason vs. Result

Default Parameters

Trained Parameters ¢8,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.6667% (124/186)
0.333333

0.0013587

tp=123 fp=61 fn=1 tn=1
0.668478260869565
0.991935483870968

65.5914% (122/186)
0.344086

0.00215517

tp=117 fp=>57 fn=7 tn=>5
0.672413793103448
0.943548387096774

A.4 One-Vs-One, 9 Features, Manual ABD

Cause vs. Concession

Default Parameters

Trained Parameters c4,gl1.0

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

55.9603% (169/302)
0.440397

0.0144526

tp=88 fp=72 fn=61 tn=81
0.55

0.590604026845638

48.6755% (147/302)
0.513245

0.000601182

tp=91 fp=90 fn=58 tn=63
0.502762430939227
0.610738255033557

Cause vs. Condition

Default Parameters

Trained Parameters ¢32,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

66.0377% (175/265)
1.35849

0.163056

tp=70 fp=11 fn=79 tn=105
0.864197530864197
0.469798657718121

65.6604% (174/265)
1.37358

0.138251

tp=75 fp=17 fn=74 tn=99
0.815217391304348
0.503355704697987

Cause vs. Purpose

Default Parameters

Trained Params c32,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

60.9756% (175/287)

3.5122

0.0588876

tp=132 fp=95 fn=17 tn=43
0.581497797356828
0.885906040268456

64.1115% (184/287)
3.22997

0.0786144

tp=100 fp=54 fn=49 tn=84
0.649350649350649
0.671140939597315

Cause vs. Reason

Default Parameters

Trained Parameters c1,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

59.3407% (162/273)
6.50549

0.0284279

tp=132 fp=94 fn=17 tn=30
0.584070796460177
0.885906040268456

60.4396% (165/273)
6.32967

0.0378265

tp=131 fp=90 fn=18 tn=34
0.592760180995475
0.879194630872483
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Cause vs. Result

Default Parameters

Trained Params ¢8,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

70.6161% (149/211)
7.34597

nan

tp=149 fp=62 fn=0 tn=0
0.706161137440758

1

70.1422% (148/211)
7.46445

0.00198146

tp=148 fp=62 fn=1 tn=0
0.704761904761905
0.993288590604027

Concession vs. Condition

Default Parameters

Trained Params ¢8,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

68.0297% (183/269)
0.319703

0.19078

tp=78 fp=11 fn=75 tn=105
0.876404494382023
0.509803921568627

70.632% (190/269)

0.29368

0.226841

tp=85 fp=11 fn=68 tn=105
0.885416666666667
0.555555555555556

Concession vs. Purpose

Default Parameters

Trained Parameters ¢8,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

63.2302% (184/291)
1.47079

0.0848841

tp=139 fp=93 fn=14 tn=45
0.599137931034483
0.908496732026144

64.9485% (189/291)
1.40206

0.0870122

tp=109 fp=>58 fn=44 tn=80
0.652694610778443
0.712418300653595

Concession vs. Reason

Default Parameters

Trained Parameters c8,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

64.2599% (178/277)
3.21661

0.0760009

tp=105 fp=>51 fn=48 tn=73
0.673076923076923
0.686274509803922

64.2599% (178/277)
3.21661

0.0749397

tp=107 fp=>53 fn=46 tn=T71
0.66875

0.699346405228758

Concession vs. Result

Default Parameters

Trained Params c0.125,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

71.1628% (153/215)
4.61395

nan

tp=153 fp=62 fn=0 tn=0
0.711627906976744

1

71.1628% (153/215)
4.61395

nan

tp=153 fp=62 fn=0 tn=0
0.711627906976744

1

Condition vs. Purpose

Default Parameters

Trained Parameters c1,g0.25

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

60.6299% (154/254)
0.393701

0.0963812

tp=106 fp=90 fn=10 tn=48
0.540816326530612
0.913793103448276

61.4173% (156/254)
0.385827

0.101503

tp=105 fp=87 fn=11 tn=>51
0.546875
0.905172413793103

Condition vs. Reason

Default Parameters

Trained Params c16,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

63.3333% (152/240)
1.46667

0.107156

tp=104 fp=76 fn=12 tn=48
0.5777TTTTTT77TT8
0.896551724137931

66.6667% (160/240)
1.33333

0.146054

tp=103 fp=67 fn=13 tn=57
0.605882352941176
0.887931034482759
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Condition vs. Result

Default Parameters

Trained Params c4,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

72.4719% (129/178)
2.47753

0.14741

tp=116 fp=49 fn=0 tn=13
0.703030303030303

1

73.0337% (130/178)
2.42697

0.159717

tp=116 fp=48 fn=0 tn=14
0.707317073170732

1

Purpose vs. Reason

Default Parameters

Trained Parameters ¢8,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

61.4504% (161/262)
0.385496

0.0510351

tp=89 fp=52 fn=49 tn=72
0.631205673758865
0.644927536231884

60.3053% (158/262)
0.396947

0.0401663

tp=93 fp=>59 fn=45 tn=65
0.611842105263158
0.673913043478261

Purpose vs. Result

Default Parameters

Trained Params ¢32,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

69% (138/200)

1.24

nan

tp=138 fp=62 fn=0 tn=0
0.69

1

67% (134/200)

1.32

2.46057e-05

tp=131 fp=>59 fn=7 tn=3
0.689473684210526
0.949275362318841

Reason vs. Result

Default Parameters

Trained Params ¢32,g0.0625

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

67.2043% (125/186)
0.327957

0.00819672

tp=123 fp=60 fn=1 tn=2
0.672131147540984
0.991935483870968

66.6667% (124/186)
0.333333

0.0117647

tp=116 fp=>54 fn=8 tn=38
0.682352941176471
0.935483870967742
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A.5 One-Vs-All, 7 Features, Automatic ABD

Cause

Default Parameters

Trained Parameters c32,g0.5

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

57.5002% (157/273)
0.424908

0.0171601

tp=103 fp=70 fn=46 tn=54

66.3004% (181/273)
0.336996

0.10203

tp=104 fp=47 fn=45 tn=77

Precision 0.595375722543353 0.688741721854305
Recall 0.691275167785235 0.697986577181208
Concession Default Parameters Trained Parameters c8,gl
Accuracy 65.343% (181/277) 67.148% (186/277)

Mean squared error
Squared correlation coefficient
Confusion matrix

1.38628
0.0841843
tp=123 fp=66 fn=30 tn=>58

1.31408
0.108351
tp=117 fp=>55 fn=36 tn=69

Precision 0.650793650793651 0.680232558139535
Recall 0.803921568627451 0.764705882352941
Condition Default Parameters Trained Parameters ¢32,g0.5
Accuracy 63.8655% (152/238) 74.7899% (178/238)

Mean squared error
Squared correlation coefficient
Confusion matrix

3.2521
0.0776764
tp=77 fp=47 fn=39 tn=75

2.26891
0.247461
tp=90 fp=34 fn=26 tn=388

Precision 0.620967741935484 0.725806451612903
Recall 0.663793103448276 0.775862068965517
Purpose Default Parameters Trained Parameters c16,gl
Accuracy 57.0881% (149/261) 60.9195% (159/261)

Mean squared error
Squared correlation coefficient
Confusion matrix

6.8659
0.0250882
tp=64 fp=38 fn=74 tn=85

6.25287
0.0513256
tp=76 fp=40 fn=62 tn=83

Precision 0.627450980392157 0.655172413793103
Recall 0.463768115942029 0.550724637681159
Reason Default Parameters Trained Parameters ¢32,g0.5
Accuracy 58.9744% (138/234) 57.6923% (135/234)

Mean squared error
Squared correlation coefficient
Confusion matrix

10.2564
0.0403751
tp=58 fp=30 fn=66 tn=80

10.5769
0.0223642
tp=76 fp=>51 fn=48 tn=59

Precision 0.659090909090909 0.598425196850394
Recall 0.467741935483871 0.612903225806452
Result Default Parameters Trained Parameters c32,g0.5
Accuracy 69.4175% (143/206) 60.6796% (125/206)

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

11.0097

7.35679e-05

tp=1 fp=2 fn=61 tn=142
0.333333333333333
0.0161290322580645

14.1553

0.00190437

tp=19 fp=38 fn=43 tn=106
0.333333333333333
0.306451612903226
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A.6 One-Vs-All, 7 Features, Manual ABD

Cause

Default Parameters

Trained Parameters c16,g1

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

52.7473% (144/273)
0.472527

0.000281165

tp=108 fp=88 fn=41 tn=36

52.0147% (142/273)
0.479853

0.000108249

tp=100 fp=82 fn=49 tn=42

Precision 0.551020408163265 0.549450549450549
Recall 0.724832214765101 0.671140939597315
Concession Default Parameters Trained Parameters c2,g0.25
Accuracy 55.5957% (154/277) 55.2347% (153/277)

Mean squared error
Squared correlation coefficient
Confusion matrix

1.77617
0.00418653
tp=123 fp=93 fn=30 tn=31

1.79061
0.00450035
tp=113 fp=84 fn=40 tn=40

Precision 0.569444444444444 0.573604060913706
Recall 0.803921568627451 0.738562091503268
Condition Default Parameters Trained Parameters c16,g0.5
Accuracy 63.4454% (151/238) 63.0252% (150/238)

Mean squared error
Squared correlation coefficient
Confusion matrix

3.28992
0.115653
tp=107 fp=78 fn=9 tn=44

3.32773
0.098886
tp=103 fp=75 fn=13 tn=47

Precision 0.578378378378378 0.578651685393258
Recall 0.922413793103448 0.887931034482759
Purpose Default Parameters Trained Parameters c2,gl
Accuracy 53.2567% (139/261) 54.023% (141/261)

Mean squared error
Squared correlation coefficient
Confusion matrix

7.47893
0.014278
tp=36 fp=20 fn=102 tn=103

7.35632
0.00888237
tp=61 fp=43 fn=77 tn=80

Precision 0.642857142857143 0.586538461538462
Recall 0.260869565217391 0.442028985507246
Reason Default Parameters Trained Parameters c2,g0.25
Accuracy 50.8547% (119/234) 51.7094% (121/234)

Mean squared error
Squared correlation coefficient
Confusion matrix

12.2863
0.00171394
tp=42 fp=33 fn=82 tn=77

12.0726
0.00438431
tp=39 fp=28 fn=85 tn=82

Precision 0.56 0.582089552238806
Recall 0.338709677419355 0.314516129032258
Result Default Parameters Trained Parameters c4,g0.5
Accuracy 70.3883% (145/206) 69.9029% (144/206)

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

10.6602

0.0113297

tp=1 fp=0 fn=61 tn=144
1

0.0161290322580645

10.835

0.0116464

tp=6 fp=6 fn=56 tn=138
0.5

0.0967741935483871
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A.7 One-Vs-All, 9 Features, Automatic ABD

Cause

Default Parameters

Trained Params ¢32,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

57.8755% (158/273)
0.421245

0.0227898

tp=91 fp=57 fn=58 tn=67

62.2711% (170/273)
0.377289

0.0559888

tp=100 fp=>54 fn=49 tn=70

Precision 0.614864864864865 0.649350649350649
Recall 0.610738255033557 0.671140939597315
Concession Default Parameters Trained Parameters c2,gl
Accuracy 66.065% (183/277) 63.5379% (176/277)

Mean squared error
Squared correlation coefficient
Confusion matrix

1.3574
0.0935545
tp=118 fp=>59 fn=35 tn=65

1.45848
0.0666338
tp=107 fp=>55 fn=46 tn=69

Precision 0.666666666666667 0.660493827160494

Recall 0.77124183006536 0.699346405228758
Condition Default Parameters Trained Parameters c32,g0.25
Accuracy 65.1261% (155/238) 69.7479% (166/238)

Mean squared error
Squared correlation coefficient
Confusion matrix

3.13866
0.0909651
tp=72 fp=39 fn=44 tn=83

2.72269
0.1593
tp=87 fp=43 fn=29 tn=79

Precision 0.648648648648649 0.669230769230769

Recall 0.620689655172414 0.75

Purpose Default Parameters Trained Params c0.5,g0.25
Accuracy 56.3218% (147/261) 57.4713% (150/261)

Mean squared error
Squared correlation coefficient
Confusion matrix

6.98851
0.0225961
tp=58 fp=34 fn=80 tn=89

6.8046
0.027397
tp=65 fp=38 fn=73 tn=85

Precision 0.630434782608696 0.631067961165049
Recall 0.420289855072464 0.471014492753623
Reason Default Parameters Trained Parameters ¢32,g0.5
Accuracy 55.1282% (129/234) 58.1197% (136/234)

Mean squared error
Squared correlation coefficient
Confusion matrix

11.2179
0.0194963
tp=44 fp=25 fn=80 tn=85

10.4701

0.0266352

tp=NA fp=NA fn=NA
tn=NA

Precision 0.63768115942029 NA

Recall 0.354838709677419 NA

Result Default Parameters Trained Parameters c32,g0.5
Accuracy 69.9029% (144/206) 66.0194% (136/206)

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

10.835

nan

tp=0 fp=0 fn=62 tn=144
NA

NA

12.233

0.0150914

tp=18 fp=26 fn=44 tn=118
0.409090909090909
0.290322580645161




92

A.8 One-Vs-All, 9 Features, Manual ABD

Cause

Default Parameters

Trained Params c16,g0.125

Accuracy

Mean squared error

Squared correlation coefficient
Confusion matrix

52.381% (143/273)
0.47619

0.000712463

tp=94 fp=75 fn=55 tn=49

54.2125% (148/273)
0.457875

0.00424334

tp=96 fp=72 fn=53 tn=52

Precision 0.556213017751479 0.571428571428571

Recall 0.630872483221476 0.644295302013423
Concession Default Parameters Trained Params c16,g0.125
Accuracy 59.2058% (164/277) 56.3177% (156/277)

Mean squared error
Squared correlation coefficient
Confusion matrix

1.63177
0.0256559
tp=111 fp=71 fn=42 tn=>53

1.74729
0.00839344
tp=114 fp=82 fn=39 tn=42

Precision 0.60989010989011 0.581632653061224
Recall 0.725490196078431 0.745098039215686
Condition Default Parameters Trained Parameters c0.5,g0.5
Accuracy 62.605% (149/238) 63.0252% (150/238)

Mean squared error
Squared correlation coefficient
Confusion matrix

3.36555
0.10553
tp=107 fp=80 fn=9 tn=42

3.32773
0.104265
tp=105 fp=77 fn=11 tn=45

Precision 0.572192513368984 0.576923076923077
Recall 0.922413793103448 0.905172413793103
Purpose Default Parameters Trained Parameters c8,g0.25
Accuracy 53.2567% (139/261) 54.4061% (142/261)

Mean squared error
Squared correlation coefficient
Confusion matrix

7.47893
0.00565787
tp=63 fp=47 fn=75 tn=76

7.29502
0.00704068
tp=80 fp=61 fn=58 tn=62

Precision 0.572727272727273 0.567375886524823
Recall 0.456521739130435 0.579710144927536
Reason Default Parameters Trained Params c32,g0.0625
Accuracy 53.4188% (125/234) 54.2735% (127/234)

Mean squared error
Squared correlation coefficient
Confusion matrix

11.6453
0.0108362
tp=41 fp=26 fn=83 tn=84

11.4316
0.0141019
tp=44 fp=27 fn=80 tn=83

Precision 0.611940298507463 0.619718309859155
Recall 0.330645161290323 0.354838709677419
Result Default Parameters Trained Parameters cl,gl
Accuracy 69.4175% (143/206) 69.9029% (144/206)

Mean squared error

Squared correlation coefficient
Confusion matrix

Precision

Recall

11.0097

0.00210027

tp=0 fp=1 fn=62 tn=143
0

0

10.835

0.00760744

tp=4 fp=4 fn=58 tn=140
0.5

0.0645161290322581
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